Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 1, Pages 169–178
DOI: https://doi.org/10.4213/tvp3380
(Mi tvp3380)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

An estimate from below of the remainder in the central limit theorem for a sum of independent random variables with finite moments of a high order

L. V. Rozovskii

Saint-Petersburg Chemical-Pharmaceutical Academy
Full-text PDF (977 kB) Citations (1)
Abstract: This paper finds optimal estimates from below for a distance between a distribution function of a sum of independent random variables with finite moments of a high order and the standard normal distribution function.
Keywords: sum of independent random variables, central limit theorem, estimate from below.
Received: 26.10.1999
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 1, Pages 174–183
DOI: https://doi.org/10.1137/S0040585X9797955X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. V. Rozovskii, “An estimate from below of the remainder in the central limit theorem for a sum of independent random variables with finite moments of a high order”, Teor. Veroyatnost. i Primenen., 47:1 (2002), 169–178; Theory Probab. Appl., 47:1 (2003), 174–183
Citation in format AMSBIB
\Bibitem{Roz02}
\by L.~V.~Rozovskii
\paper An estimate from below of the remainder in the central limit theorem for a sum of independent random variables with finite moments of a high order
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 1
\pages 169--178
\mathnet{http://mi.mathnet.ru/tvp3380}
\crossref{https://doi.org/10.4213/tvp3380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978706}
\zmath{https://zbmath.org/?q=an:1033.60030}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 1
\pages 174--183
\crossref{https://doi.org/10.1137/S0040585X9797955X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183800400018}
Linking options:
  • https://www.mathnet.ru/eng/tvp3380
  • https://doi.org/10.4213/tvp3380
  • https://www.mathnet.ru/eng/tvp/v47/i1/p169
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :148
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024