Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 1, Pages 43–52 (Mi tvp337)  

This article is cited in 10 scientific papers (total in 10 papers)

On the Central Limit Theorem for Random Elements with Values in a Hiilbert Space

N. P. Kandelakia, V. V. Sazonovb

a Tbilisi
b Moscow
Abstract: Let $\{{X_k}\}$ be a sequence of independent random elements with values in a separable Hilbert space $H$ such that ${\mathbf M}\|X_k\|^2<\infty$, $k=1,2,\dots$ . For simplicity, assume ${\mathbf M}X_k=\theta$, $k=1,2,\dots$, ($\theta$ is the identity of $H$) and let $Y_n=\sum\nolimits_{k=1}^n {X_k}$. Let $\Phi$ be a normal distribution on $H$ with the characteristic functional $\exp\{{-\tfrac{1}{2}(Sh,h)}\}$, $h\in H$, where $S$ is an $S$-operator. For a random element $X$ with values in $H$ let $Q_X$ be the distribution on $H$ generated by $X$ and $S_X$ the operator corresponding to the moment matrix of the distribution $Q_X$. A sequence of linear bounded operators $\{{A_n}\}$ is called a normalizing sequence for the sequence $\{{X_k}\}$ with respect to the $S$-operator $S$ if the relation (6) and (7) hold true for it. It is proved that if $\{{A_n}\}$ is a normalizing sequence for $\{{X_k}\}$ with respect to $S$ the distributions $Q_{A_n Y_n}$ converge weakly to $\Phi$ and the relation (8) is true if and only if the condition (9) is satisfied. This result generalizes the Lindeberg-Feller theorem.With a trivial exclusion there always exists a normalizing sequence $\{{A_n}\}$ such that $S_{A_n Y_n}=S^{(n)}$, $S^{(l_n )}$, $l_n\to\infty$, or $S$ (see the definition of $S^{(n)}$ in § 3).
Received: 14.12.1962
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 1, Pages 38–46
DOI: https://doi.org/10.1137/1109004
Bibliographic databases:
Language: Russian
Citation: N. P. Kandelaki, V. V. Sazonov, “On the Central Limit Theorem for Random Elements with Values in a Hiilbert Space”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 43–52; Theory Probab. Appl., 9:1 (1964), 38–46
Citation in format AMSBIB
\Bibitem{KanSaz64}
\by N.~P.~Kandelaki, V.~V.~Sazonov
\paper On the Central Limit Theorem for Random Elements with Values in a~Hiilbert Space
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 1
\pages 43--52
\mathnet{http://mi.mathnet.ru/tvp337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=161360}
\zmath{https://zbmath.org/?q=an:0147.17201}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 1
\pages 38--46
\crossref{https://doi.org/10.1137/1109004}
Linking options:
  • https://www.mathnet.ru/eng/tvp337
  • https://www.mathnet.ru/eng/tvp/v9/i1/p43
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :151
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024