|
Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 2, Pages 393–395
(Mi tvp3356)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On a local limit theorem for the sums of independent random variables
S. V. Nagaev, M. S. Èppel' Novosibirsk
Abstract:
Let $X_i$, $i\to\overline{1,\infty}$, be independent identically distributed random variables with $\mathbf EX_i=0$, $\mathbf DX_i=\sigma^2<\infty$, and let $\displaystyle S_n=\sum_1^nX_i$, $\displaystyle\overline S_n=\max_{1\le k\le n}S_k$. A local limit theorem for the probabilities $\mathbf P(\overline S_n=x)$ is formulated in the case when $x=o(\sqrt n)$. This result complements the local limit theorem proved in [1]
Received: 26.03.1975
Citation:
S. V. Nagaev, M. S. Èppel', “On a local limit theorem for the sums of independent random variables”, Teor. Veroyatnost. i Primenen., 21:2 (1976), 393–395; Theory Probab. Appl., 21:2 (1977), 384–385
Linking options:
https://www.mathnet.ru/eng/tvp3356 https://www.mathnet.ru/eng/tvp/v21/i2/p393
|
|