Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 1, Pages 175–177
DOI: https://doi.org/10.4213/tvp331
(Mi tvp331)
 

Short Communications

An inequality for a multidimensional characteristic function

N. G. Gamkrelidzeab

a Gubkin Russian State University of Oil and Gas
b A. Razmadze Mathematical Institute, Georgian Academy of Sciences
Abstract: Let $\xi $ be a vector-valued random variable in $\mathbf{R}^s$ and a corresponding density function $p_\xi(x)$ be “close” to the “standard”normal density. Under this condition an inequality for a characteristic function is proved. The inequality obtained is of interest for the problem of a lower estimator of the rate of convergence in the local limit theorem for densities. An analogous inequality for a lattice distribution was investigated in [N. G. Gamkrelidze, Litovsk. Mat. Sb., 7 (1967), pp. 405–408 (in Russian)] and was given in [V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York, 1975] and [Yu. V. Prohorov and Yu. A. Rozanov, Probability Theory: Basic Concepts, Limit Theorems, and Random Processes, Springer-Verlag, Berlin, New York, 1969].
Keywords: vector-valued random variable, density function, standard normal density, characteristic function, local limit theorem.
Received: 16.10.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 1, Pages 133–135
DOI: https://doi.org/10.1137/S0040585X97978117
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. G. Gamkrelidze, “An inequality for a multidimensional characteristic function”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 175–177; Theory Probab. Appl., 45:1 (2001), 133–135
Citation in format AMSBIB
\Bibitem{Gam00}
\by N.~G.~Gamkrelidze
\paper An inequality for a multidimensional characteristic function
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 175--177
\mathnet{http://mi.mathnet.ru/tvp331}
\crossref{https://doi.org/10.4213/tvp331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810981}
\zmath{https://zbmath.org/?q=an:0981.60004}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 133--135
\crossref{https://doi.org/10.1137/S0040585X97978117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167428900008}
Linking options:
  • https://www.mathnet.ru/eng/tvp331
  • https://doi.org/10.4213/tvp331
  • https://www.mathnet.ru/eng/tvp/v45/i1/p175
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024