Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 177–180 (Mi tvp3300)  

Short Communications

A forward interpolation equation of a semimartingale by observations over a point process

N. V. Kvashko

M. V. Lomonosov Moscow State University
Abstract: Let $(\Omega,\mathcal{F}_\infty,\mathbf{P})$ be a complete probability space, and let $(\mathcal{F}_t )$, $t\in\mathbf{R}_ + $, be a nondecreasing right-continuous family of sub-$\sigma $-algebras of $\mathcal{F}_\infty$ completed by sets from $\mathcal{F}_\infty$ of zero probability. A two-dimensional partially observable stochastic process is given on the probability space $(\Omega,\mathcal{F}_\infty,\mathbf{P})$, where $\theta _t $ is an $(\mathcal{F}_t )$-adapted, $0\leq t<\infty$, unobservable component and $(T_n ,X_n)$, $n \ge 1$, is an observable one. We consider the problem of optimal interpolation, which consists of finding an optimal mean square estimate $\theta_s$ from the observations of the process $(T_n,X_n)$ on $[0,t]$, $t\geq s$. This paper contains a deduction of an equation of optimal nonlinear interpolation on the basis of an equation of optimal nonlinear filtering.
Keywords: probability space, $\sigma $-algebra, point process, jump measure of a process, filtration of observations, martingale, semimartingale, drift, Dolé, ans measure, compensator, filtering, interpolation.
Received: 10.08.1992
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 162–165
DOI: https://doi.org/10.1137/1140015
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Kvashko, “A forward interpolation equation of a semimartingale by observations over a point process”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 177–180; Theory Probab. Appl., 40:1 (1995), 162–165
Citation in format AMSBIB
\Bibitem{Kva95}
\by N.~V.~Kvashko
\paper A~forward interpolation equation of a~semimartingale by observations over a~point process
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 177--180
\mathnet{http://mi.mathnet.ru/tvp3300}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346740}
\zmath{https://zbmath.org/?q=an:0840.60043}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 162--165
\crossref{https://doi.org/10.1137/1140015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100015}
Linking options:
  • https://www.mathnet.ru/eng/tvp3300
  • https://www.mathnet.ru/eng/tvp/v40/i1/p177
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024