Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 1, Pages 166–175
DOI: https://doi.org/10.4213/tvp330
(Mi tvp330)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

A random walk with a skip-free component and the Lagrange inversion formula

O. V. Viskov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (562 kB) Citations (2)
Abstract: The paper shows that for a random walk with a skip-free component, distributions of certain first passage times and hitting points are infinitely divisible. The proofs are elementary and based on an algebraic approach to the classical Lagrange formula. This approach permits us to write explicitly the respective Levy measures.
Keywords: Lagrange inversion formula, Heisenberg–Weyl algebra, infinitely divisible distributions, skip-free random walks.
Received: 09.07.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 1, Pages 164–172
DOI: https://doi.org/10.1137/S0040585X97978105
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. V. Viskov, “A random walk with a skip-free component and the Lagrange inversion formula”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 166–175; Theory Probab. Appl., 45:1 (2001), 164–172
Citation in format AMSBIB
\Bibitem{Vis00}
\by O.~V.~Viskov
\paper A random walk with a skip-free component and the Lagrange inversion formula
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 166--175
\mathnet{http://mi.mathnet.ru/tvp330}
\crossref{https://doi.org/10.4213/tvp330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810980}
\zmath{https://zbmath.org/?q=an:0978.60042}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 164--172
\crossref{https://doi.org/10.1137/S0040585X97978105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167428900013}
Linking options:
  • https://www.mathnet.ru/eng/tvp330
  • https://doi.org/10.4213/tvp330
  • https://www.mathnet.ru/eng/tvp/v45/i1/p166
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :218
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024