|
Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 1, Pages 135–142
(Mi tvp3281)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Short Communications
Local limit theorems for weighted sums of independent random variables
E. M. Shoukry Leningrad
Abstract:
In this paper, we study the behaviour of $\displaystyle S_n=\sum_{k=-\infty}^{\infty}a_{kn}\xi_k$ as $n$ tends to infinity, where $\xi_k$ are independent identically distributed random variables and their common distribution function belongs to the domain of attraction of a certain stable law $G$ with index $\alpha$. Let the following two conditions on the matrix of coefficients ($a_{kn}$) be satisfied:
1) $\displaystyle\sum_{k=-\infty}^{\infty}|a_{kn}|^{\alpha}\widetilde h(a_{kn})=b_n\to 1\qquad(n\to\infty),\\$
where $\widetilde h(x)$ is the slowly varying function from the representation for the characteristic function of $G$;
2) $\displaystyle\gamma_n=\sup_k|a_{kn}|\to 0\qquad(n\to\infty).\\$
Then it is shown that the distribution function of $S_n$ converges to a stable distribution function, and, if $\displaystyle \int_{-\infty}^{\infty}|f(t)|^p\,dt<\infty$, $p>0$, where $f(t)$ is the characteristic function of $\xi_k$ then the density function of $S_n$ exists and converges to the density function of the limit distribution.
Received: 17.09.1974
Citation:
E. M. Shoukry, “Local limit theorems for weighted sums of independent random variables”, Teor. Veroyatnost. i Primenen., 21:1 (1976), 135–142; Theory Probab. Appl., 21:1 (1976), 137–144
Linking options:
https://www.mathnet.ru/eng/tvp3281 https://www.mathnet.ru/eng/tvp/v21/i1/p135
|
|