Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 1, Pages 16–33 (Mi tvp3272)  

This article is cited in 17 scientific papers (total in 17 papers)

Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions

S. I. Gusev

Leningrad
Abstract: Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_{\theta}$ with density $f(x,\theta)$, $\theta\in \Theta\subset R^1$. Let $T_n$ be a Bayesian estimate or a maximum posterior density estimate. The expansions
$$ \sqrt n(T_n-\theta)=\xi_0+\xi_1\frac{1}{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac{1}{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac{1}{\sqrt n}\biggr)^k, $$
obtained in [1], imply expansions of the moments $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^m$ where $m\ge 1$ is an integer, and expansions of the distribution functions $\mathbf P_{\theta}\{\sqrt n(T_n-\theta)<z\}$. Linnik's problem of calculating the terms of order $1/n$ in the expansion of $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^2$ is solved.
Received: 11.03.1975
English version:
Theory of Probability and its Applications, 1976, Volume 21, Issue 1, Pages 14–33
DOI: https://doi.org/10.1137/1121002
Bibliographic databases:
Language: Russian
Citation: S. I. Gusev, “Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions”, Teor. Veroyatnost. i Primenen., 21:1 (1976), 16–33; Theory Probab. Appl., 21:1 (1976), 14–33
Citation in format AMSBIB
\Bibitem{Gus76}
\by S.~I.~Gusev
\paper Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 1
\pages 16--33
\mathnet{http://mi.mathnet.ru/tvp3272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=413327}
\zmath{https://zbmath.org/?q=an:0403.62020}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 21
\issue 1
\pages 14--33
\crossref{https://doi.org/10.1137/1121002}
Linking options:
  • https://www.mathnet.ru/eng/tvp3272
  • https://www.mathnet.ru/eng/tvp/v21/i1/p16
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024