Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 3, Pages 498–512 (Mi tvp3250)  

This article is cited in 35 scientific papers (total in 35 papers)

A limit theorem for solutions of differential equations with random right hand side

A. N. Borodin

Leningrad
Abstract: The main purpose of this paper is to weak requirements in a theorem of Has'minski\u i [2].
The asymptotic behaviour of the solution $X_{\varepsilon}(t,\omega)$ of equation (0.1) as $\varepsilon\to 0$ is studied. The main assumptions are the following: conditions (1.1) and (1.2) are fulfilled, the processes $F^{(i)}(x,t,\omega)$ satisfy Kolmogorov's mixing condition (0.4) (for a special type of processes $F^{(i)}$, see condition (4'), Rosenblatt's mixing condition (0.3) is sufficient), limits (1.4) and (1.5) exist. Under these assumptions and some additional ones the process $X_{\varepsilon}(\tau/\varepsilon^2,\omega)$ is proved to converge weakly to a Markov process $X_0(\tau,\omega)$. The local characteristics of $X_0(\tau,\omega)$ are calculated from condition (1.5).
Received: 02.12.1975
English version:
Theory of Probability and its Applications, 1978, Volume 22, Issue 3, Pages 482–497
DOI: https://doi.org/10.1137/1122059
Bibliographic databases:
Language: Russian
Citation: A. N. Borodin, “A limit theorem for solutions of differential equations with random right hand side”, Teor. Veroyatnost. i Primenen., 22:3 (1977), 498–512; Theory Probab. Appl., 22:3 (1978), 482–497
Citation in format AMSBIB
\Bibitem{Bor77}
\by A.~N.~Borodin
\paper A limit theorem for solutions of differential equations with random right hand side
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 3
\pages 498--512
\mathnet{http://mi.mathnet.ru/tvp3250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=517995}
\zmath{https://zbmath.org/?q=an:0412.60067}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 22
\issue 3
\pages 482--497
\crossref{https://doi.org/10.1137/1122059}
Linking options:
  • https://www.mathnet.ru/eng/tvp3250
  • https://www.mathnet.ru/eng/tvp/v22/i3/p498
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :174
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024