Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 1, Pages 73–102
DOI: https://doi.org/10.4213/tvp325
(Mi tvp325)
 

This article is cited in 6 scientific papers (total in 6 papers)

The asymptotic behavior of the Pearson statistic

V. M. Kruglov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Abstract: Some limit theorems are proved for some functionals of the Pearson statistic constructed from the polynomial distribution with parameters $n$ and $p_k$, $k=1,2,\dots$, $s=s(n)$, under the assumption that $\inf_{n}\{n\min_{1\le k\le s}p_k\}>0$, $s\to \infty$, $n\min\{p_k: k\in W_n\}\longrightarrow \infty$, $N_n/s\to 1$ as $n\to \infty$, where $N_n$ is the number of elements in the set $W_n\subset \{1,2,\dots ,s\}$. In particular, multivariate and functional limit theorems are proved for this statistic. As a whole, the statements proved in this paper demonstrate that the Pearson statistic in many respects behaves as an asymptotically normal sum of independent random variables.
Keywords: Pearson statistic, chi-square statistic, random broken lines, polynomial distribution.
Received: 18.02.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 1, Pages 69–92
DOI: https://doi.org/10.1137/S0040585X97978051
Bibliographic databases:
Language: Russian
Citation: V. M. Kruglov, “The asymptotic behavior of the Pearson statistic”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 73–102; Theory Probab. Appl., 45:1 (2001), 69–92
Citation in format AMSBIB
\Bibitem{Kru00}
\by V.~M.~Kruglov
\paper The asymptotic behavior of the Pearson statistic
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 73--102
\mathnet{http://mi.mathnet.ru/tvp325}
\crossref{https://doi.org/10.4213/tvp325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810975}
\zmath{https://zbmath.org/?q=an:0987.60046}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 69--92
\crossref{https://doi.org/10.1137/S0040585X97978051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167428900005}
Linking options:
  • https://www.mathnet.ru/eng/tvp325
  • https://doi.org/10.4213/tvp325
  • https://www.mathnet.ru/eng/tvp/v45/i1/p73
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :175
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024