|
Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 2, Pages 415–420
(Mi tvp3231)
|
|
|
|
This article is cited in 13 scientific papers (total in 14 papers)
Short Communications
On the $\omega^2$ statistic distribution in the multidimensional case
E. N. Krivyakovaa, G. V. Martynovb, Yu. N. Tyurinb a Tomsk
b Moscow
Abstract:
The paper gives a method for computing eigenvalues of the integral operator with the kernel
$$
K(s,t)=\prod_{i=1}^m\min(s_i,t_i)-\prod_{i=1}^ms_it_i
$$
which is used to find the $\omega^2$-distribution in the multidimensional case. Tables for the cumulative distribution function and percentage points are given for $m=3$.
Received: 21.01.1975
Citation:
E. N. Krivyakova, G. V. Martynov, Yu. N. Tyurin, “On the $\omega^2$ statistic distribution in the multidimensional case”, Teor. Veroyatnost. i Primenen., 22:2 (1977), 415–420; Theory Probab. Appl., 22:2 (1978), 406–410
Linking options:
https://www.mathnet.ru/eng/tvp3231 https://www.mathnet.ru/eng/tvp/v22/i2/p415
|
|