Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 1, Pages 30–51
DOI: https://doi.org/10.4213/tvp323
(Mi tvp323)
 

This article is cited in 2 scientific papers (total in 2 papers)

Deviations from typical type proportions in critical multitype Galton–Watson processes

V. A. Vatutina, K. Fleischmannb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Weierstrass Institute for Applied Analysis and Stochastics, Germany
Full-text PDF (841 kB) Citations (2)
Abstract: Consider a critical $K$-type Galton–Watson process $\{\mathbf{Z}(t): t=0,1,\ldots \} $ and a real vector $\mathbf{w}=(w_{1},\ldots ,w_{K})^{\top}$. It is well known that under rather general assumptions, $\langle \mathbf{Z} (t),\mathbf{w}\rangle :=\sum_{k}Z_{k}(t)w_{k}$ conditioned on nonextinction and appropriately scaled has a limit in law as $t\uparrow \infty$ [V. A. Vatutin, Math. USSR Sb., 32 (1977), pp. 215–225]. However, the limit degenerates to $\,0$ if the vector $\mathbf{w}$ deviates seriously from "typical" type proportions, i.e., if $\mathbf{w}$ is orthogonal to the left eigenvectors related to the maximal eigenvalue of the mean value matrix. We show that in this case (under reasonable additional assumptions on the offspring laws) there exists a better normalization which leads to a nondegenerate limit. Opposed to the finite variance case, which was already resolved in [K. Athreya and P. Ney, Ann. Probab., 2 (1974), pp. 339–343] and [I. S. Badalbaev and A. Mukhitdinov, Theory Probab. Appl., 34 (1989), pp. 690–694], the limit law (for instance, its “index”) may seriously depend on $\mathbf{w}$.
Keywords: marked particle, typical type proportions, nondegenerate limit, nonextinction, deviations, asymptotic expansion.
Received: 24.12.1998
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 1, Pages 23–40
DOI: https://doi.org/10.1137/S0040585X97978038
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, K. Fleischmann, “Deviations from typical type proportions in critical multitype Galton–Watson processes”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 30–51; Theory Probab. Appl., 45:1 (2001), 23–40
Citation in format AMSBIB
\Bibitem{VatFle00}
\by V.~A.~Vatutin, K.~Fleischmann
\paper Deviations from typical type proportions in critical multitype Galton--Watson processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 30--51
\mathnet{http://mi.mathnet.ru/tvp323}
\crossref{https://doi.org/10.4213/tvp323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810973}
\zmath{https://zbmath.org/?q=an:0988.60084}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 23--40
\crossref{https://doi.org/10.1137/S0040585X97978038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167428900002}
Linking options:
  • https://www.mathnet.ru/eng/tvp323
  • https://doi.org/10.4213/tvp323
  • https://www.mathnet.ru/eng/tvp/v45/i1/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024