Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2000, Volume 45, Issue 1, Pages 5–29
DOI: https://doi.org/10.4213/tvp322
(Mi tvp322)
 

This article is cited in 18 scientific papers (total in 18 papers)

Integro-local limit theorems including large deviations for sums of random vectors. II

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: This paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 43 (1998), pp. 1–12] and [A. A. Borovkov and A. A. Mogulskii, Siberian Math. J., 37 (1996), pp. 647–682]. Let $S(n)=\xi(1)+\cdots +\xi(n)$ be the sum of independent nondegenerate random vectors in $\mathbf{R}^d$ having the same distribution as a random vector $\xi$. It is assumed that $\varphi(\lambda)= \mathbf{E} \,e^{\langle\lambda,\xi\rangle}$ is finite in a vicinity of a point ${\lambda \in \mathbf{R}^d}$. We obtain asymptotic representations for the probability $\mathbf{P}\{S(n)\in \Delta (x)\}$ and the renewal function $H(\Delta (x))= \sum_{n=1}^{\infty}\mathbf{P}\{S(n)\in \Delta (x)\}$, where $\Delta(x)$ is a cube in $\mathbf{R}^d$ with a vertex at point $x$ and the edge length $\Delta$. In contrast to the above-mentioned papers, the obtained results are valid, in essence, either without any additional assumptions or under very weak restrictions.
Keywords: large deviations, rate function, renewal function, integro-local theorem, arithmetic distribution, lattice distribution, nonlattice distribution.
Received: 12.02.1999
English version:
Theory of Probability and its Applications, 2001, Volume 45, Issue 1, Pages 3–22
DOI: https://doi.org/10.1137/S0040585X97978026
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “Integro-local limit theorems including large deviations for sums of random vectors. II”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 5–29; Theory Probab. Appl., 45:1 (2001), 3–22
Citation in format AMSBIB
\Bibitem{BorMog00}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Integro-local limit theorems including large deviations for sums of random vectors.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 5--29
\mathnet{http://mi.mathnet.ru/tvp322}
\crossref{https://doi.org/10.4213/tvp322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810972}
\zmath{https://zbmath.org/?q=an:0980.60030}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 3--22
\crossref{https://doi.org/10.1137/S0040585X97978026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167428900001}
Linking options:
  • https://www.mathnet.ru/eng/tvp322
  • https://doi.org/10.4213/tvp322
  • https://www.mathnet.ru/eng/tvp/v45/i1/p5
    Cycle of papers
    This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :165
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024