Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 2, Pages 209–221 (Mi tvp3211)  

This article is cited in 11 scientific papers (total in 11 papers)

A local limit theorem for products of random matrices

V. N. Tutubalin

Moscow
Abstract: The product $g(n)=g_1\dots g_n$ of random identically distributed independent matrices is represented in the form: $g(n)=x(n)\delta(n)v(n)$, where $x(n)$ and $v(n)$ are unitary matrices,
$$ \delta(n)=\operatorname{diag}(\exp\tau_1(n),\dots,\exp\tau_m(n)),\qquad\tau_1(n)<\dots<\tau_m(n). $$

Under conditions 1*) and 2*) the following theorem is proved:
The distribution of $g(n)$ can be decomposed into the sum of two measures. The first has the full variation $O(1/n)$. The second is given by the joint density $p_n^*$ of the random variables
$$ x(n),\tau^*(n)=\frac{1}{\sqrt n}(\tau(n)-na),v(n), $$
and
$$ \sup_{x,t,v}|p_n^*(x,t,v)-\nu_X(x)N_{\sigma^2}(t)\nu_n(v)|\to 0, $$
where $N_{\sigma^2}(t)$ is the normal density on the plane $t_1+\dots+t_m=0$ with non-degenerate, on this plane, variance-covariance matrix $\sigma^2$; $a=(a_1,\dots,a_m)$, $a_1<\dots<a_m$, is а constant vector, and $\nu_x(n)$ and $\nu_n(v)$ are some probability densities on a unitary subgroup ($\nu_n(v)$ is one and the same for all even $n$ and one and the same, may be different, for all odd $n$).
Received: 25.02.1976
English version:
Theory of Probability and its Applications, 1978, Volume 22, Issue 2, Pages 203–214
DOI: https://doi.org/10.1137/1122028
Bibliographic databases:
Language: Russian
Citation: V. N. Tutubalin, “A local limit theorem for products of random matrices”, Teor. Veroyatnost. i Primenen., 22:2 (1977), 209–221; Theory Probab. Appl., 22:2 (1978), 203–214
Citation in format AMSBIB
\Bibitem{Tut77}
\by V.~N.~Tutubalin
\paper A~local limit theorem for products of random matrices
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 2
\pages 209--221
\mathnet{http://mi.mathnet.ru/tvp3211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=482920}
\zmath{https://zbmath.org/?q=an:0382.60019}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 22
\issue 2
\pages 203--214
\crossref{https://doi.org/10.1137/1122028}
Linking options:
  • https://www.mathnet.ru/eng/tvp3211
  • https://www.mathnet.ru/eng/tvp/v22/i2/p209
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024