|
This article is cited in 25 scientific papers (total in 25 papers)
Martingales, Tauberian theorem, and strategies of gambling
A. A. Novikov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Using the Tauberian theorem, we get an asymptotic relation between the tail of the distribution of the quadratic characteristic of a martingale and the expectation of its terminal value. In case of continuous martingales the following result is proven: if $\tau $ is a stopping time for a standard Wiener process Wt with integrable terminal value $W_\tau $, then
\begin{equation}
\liminf_{t\rightarrow \infty}(\mathbb P\{\tau >t\}\sqrt{t}) \ge \sqrt{\frac 2\pi }|\mathbb E W_\tau | .
\end{equation}
Using a related result for discrete time martingales, we study asymptotic characteristics of some strategies of gambling and, in particular, Oscar's strategy.
Keywords:
optimal stopping, local martingales, Wald equation, uniform integrability, sharp inequalities, gambling strategies, boundary crossing problem.
Received: 08.04.1996
Citation:
A. A. Novikov, “Martingales, Tauberian theorem, and strategies of gambling”, Teor. Veroyatnost. i Primenen., 41:4 (1996), 810–826; Theory Probab. Appl., 41:4 (1997), 716–729
Linking options:
https://www.mathnet.ru/eng/tvp3203https://doi.org/10.4213/tvp3203 https://www.mathnet.ru/eng/tvp/v41/i4/p810
|
Statistics & downloads: |
Abstract page: | 564 | Full-text PDF : | 393 | First page: | 17 |
|