Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1996, Volume 41, Issue 4, Pages 765–784
DOI: https://doi.org/10.4213/tvp3201
(Mi tvp3201)
 

This article is cited in 2 scientific papers (total in 2 papers)

The prescribed precision estimators of the autoregression parameter using the generalized least square method

V. V. Konev, S. M. Pergamenshchikov

Tomsk State Uneversity, Department of Applied Mathematics
Full-text PDF (830 kB) Citations (2)
Abstract: A sequential estimator is proposed for the autoregression parameter of first-order (AR(1)), which is constructed on the basis of a generalized least square method (GLSM) using a special choice of the weight coefficients in the sum of residual squares. Under some natural requirements on the noise distribution function, this is the prescribed precision estimator in the sense that it provides the unknown parameter estimation with any fixed square average accuracy at the moment of termination of the observation. In contrast to the sequential least square estimator, our estimator has the important property of uniform asymptotic normality with respect to the parameter on the whole axis. Using this result one can show that the sequential least square estimator is asymptotically optimal in the minimax sense for the power loss function, in a wide class of sequential and nonsequential procedures.
Keywords: autoregression process, prescribed precision estimators, local asymptotic normality, uniform asymptotic normality.
Received: 18.11.1994
English version:
Theory of Probability and its Applications, 1997, Volume 41, Issue 4, Pages 678–694
DOI: https://doi.org/10.1137/S0040585X97975691
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Konev, S. M. Pergamenshchikov, “The prescribed precision estimators of the autoregression parameter using the generalized least square method”, Teor. Veroyatnost. i Primenen., 41:4 (1996), 765–784; Theory Probab. Appl., 41:4 (1997), 678–694
Citation in format AMSBIB
\Bibitem{KonPer96}
\by V.~V.~Konev, S.~M.~Pergamenshchikov
\paper The prescribed precision estimators of the autoregression parameter using the generalized least square method
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 4
\pages 765--784
\mathnet{http://mi.mathnet.ru/tvp3201}
\crossref{https://doi.org/10.4213/tvp3201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1687117}
\zmath{https://zbmath.org/?q=an:0894.62092}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 4
\pages 678--694
\crossref{https://doi.org/10.1137/S0040585X97975691}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071926900006}
Linking options:
  • https://www.mathnet.ru/eng/tvp3201
  • https://doi.org/10.4213/tvp3201
  • https://www.mathnet.ru/eng/tvp/v41/i4/p765
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024