Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 610–613 (Mi tvp3199)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the asymptotic behaviour of the first eigenvalue of a second-order differential operator with small parameter by the higher derivatives

A. D. Wentzel'

Moscow
Full-text PDF (276 kB) Citations (2)
Abstract: An application of results concerning Markow processes to investigation of eigenvalues of linear operators is given.
Let $L^h=\sum b^i(x)\partial/\partial x^i+(h/2)\sum a^{ij}(x)\partial^2/\partial x^i\partial x^j$, for each $h>0$, be an elliptic operator in a bounded domain $D\subset R^r$; $\lambda_1(h)$ be the first (i.e., minimal) eigenvalue of the operator $-L^h$ with zero boundary condition on $\partial D$. It was shown in [2], [3] that, if in $D$ there exists a finite number of compacts containing stable $\omega$-limiting sets of the dynamical system $\dot x_t=b(x_t)$, then $\lambda_1(h)$ tends to 0 with an exponential rate when $h\downarrow0$. In this paper, we show that, if all solutions of $\dot x_t=b(x_t)$ sooner or later leave $D\bigcup\partial D$, then $\lambda_1(h)=c_1h^{-1}+o(h^{-1})$; a formula for the constant $c_1$ is given. The proof, as well as in [2], uses the diffusion process $(x_t^h,\mathbf P_x^h)$ corresponding to $L^h$ and the exit time $\tau^h$ for $D$ and the theorems of [1] concerning probabilities of certain nearly improbable events.
Received: 30.07.1974
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. D. Wentzel', “On the asymptotic behaviour of the first eigenvalue of a second-order differential operator with small parameter by the higher derivatives”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 610–613
Citation in format AMSBIB
\Bibitem{Ven75}
\by A.~D.~Wentzel'
\paper On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 3
\pages 610--613
\mathnet{http://mi.mathnet.ru/tvp3199}
\zmath{https://zbmath.org/?q=an:0364.35046}
Linking options:
  • https://www.mathnet.ru/eng/tvp3199
  • https://www.mathnet.ru/eng/tvp/v20/i3/p610
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024