|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 557–570
(Mi tvp3195)
|
|
|
|
On some distributions connected with the waiting time in a polynomial scheme
G. I. Ivchenko Moscow
Abstract:
Let, in a polynomial scheme with $N$ equiprobable outcomes, $n$ trials be made, and $\rho_1(n)$ $(\rho_2(n))$ denote the maximum (minimum) sampling frequencies. We consider $(\rho_1(n),\rho_2(n))$ as a random function of time parameter $n$ and study the asymptotic behaviour (as $N\to\infty$) of the random variables $\tau_m=\nu_2(m)-\nu_1(m)$, $\rho_1(\nu_2(m))$ and $\rho_2(\nu_1(m))$, where
$$
\nu_i(m)=\min\{n\colon\rho_i(n)=m\};\quad i=1,2;\quad m\ge1.
$$
Received: 13.03.1974
Citation:
G. I. Ivchenko, “On some distributions connected with the waiting time in a polynomial scheme”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 557–570; Theory Probab. Appl., 20:3 (1976), 545–559
Linking options:
https://www.mathnet.ru/eng/tvp3195 https://www.mathnet.ru/eng/tvp/v20/i3/p557
|
Statistics & downloads: |
Abstract page: | 219 | Full-text PDF : | 96 |
|