Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 488–514 (Mi tvp3181)  

This article is cited in 17 scientific papers (total in 17 papers)

Asymptotic expansions associated with some statistical estimates in the smooth case. I. Decompositions of random variables

S. I. Gusev

Leningrad
Abstract: Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_\theta$ with density $f(x,\theta)$, $\theta\in\Theta$, where $\Theta$ is an open set on the real line. Let $T_n$ be a Bayessian estimate or a maximum likelihood estimate. Put
$$ \Delta_i=\frac1{\sqrt n}\sum_{j=1}^n(l_i(x_j,\theta)-\mathbf E_\theta l_i(x_1,\theta)),\quad i=1,\dots,k+1,\quad k\ge1, $$
where
$$ l_i(x,\theta)= \begin{cases} \frac{\partial^i}{\partial\theta^i}\ln f(x,\theta),&f(x,\theta)\ne0, \\ 0,&f(x,\theta)=0. \end{cases} $$
Supposing regularity conditions ($f(x,\,\cdot\,)$ has $k+2$ continuous derivatives, the moments $\mathbf E_\theta|l_i(\,\cdot\,\theta)|^{k+2}$ are uniformly bounded on compacts etc.), we obtain an expansion of the form
$$ \sqrt n(T_n-\theta)=\xi_0+\xi_1\frac1{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac1{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac1{\sqrt n}\biggr)^k, $$
where $\xi_\theta=\Delta_1/I(\theta)$, $I(\theta)$ is Fischer's information quantity, $\xi_i$ are polynomials in $\Delta_1,\dots,\Delta_{i+1}$,
$$ \mathbf P_\theta\{|\widetilde\xi_{k,n}|>n^\delta\}=O\bigl(n^{-\frac{k-1}2-C^\delta}\bigr) $$
for each sufficiently small $\delta>0$ uniformly on compacts. This expansion implies asymptotic expansions of $\mathbf E_\theta(\sqrt n(T_n-\theta))^m$ and $\mathbf P_\theta\{\sqrt n(T_n-\theta)<z\}$.
Received: 06.06.1974
English version:
Theory of Probability and its Applications, 1976, Volume 20, Issue 3, Pages 470–498
DOI: https://doi.org/10.1137/1120056
Bibliographic databases:
Language: Russian
Citation: S. I. Gusev, “Asymptotic expansions associated with some statistical estimates in the smooth case. I. Decompositions of random variables”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 488–514; Theory Probab. Appl., 20:3 (1976), 470–498
Citation in format AMSBIB
\Bibitem{Gus75}
\by S.~I.~Gusev
\paper Asymptotic expansions associated with some statistical estimates in the smooth case. I.~Decompositions of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 3
\pages 488--514
\mathnet{http://mi.mathnet.ru/tvp3181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=381082}
\zmath{https://zbmath.org/?q=an:0359.62019}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 20
\issue 3
\pages 470--498
\crossref{https://doi.org/10.1137/1120056}
Linking options:
  • https://www.mathnet.ru/eng/tvp3181
  • https://www.mathnet.ru/eng/tvp/v20/i3/p488
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024