|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 488–514
(Mi tvp3181)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Asymptotic expansions associated with some statistical estimates in the smooth case. I. Decompositions of random variables
S. I. Gusev Leningrad
Abstract:
Let $x_1,\dots,x_n$ be a sample from a distribution $\mathbf P_\theta$ with density $f(x,\theta)$, $\theta\in\Theta$, where $\Theta$ is an open set on the real line. Let $T_n$ be a Bayessian estimate or a maximum likelihood estimate. Put
$$
\Delta_i=\frac1{\sqrt n}\sum_{j=1}^n(l_i(x_j,\theta)-\mathbf E_\theta l_i(x_1,\theta)),\quad i=1,\dots,k+1,\quad k\ge1,
$$
where
$$
l_i(x,\theta)=
\begin{cases}
\frac{\partial^i}{\partial\theta^i}\ln f(x,\theta),&f(x,\theta)\ne0,
\\
0,&f(x,\theta)=0.
\end{cases}
$$
Supposing regularity conditions ($f(x,\,\cdot\,)$ has $k+2$ continuous derivatives, the moments $\mathbf E_\theta|l_i(\,\cdot\,\theta)|^{k+2}$ are uniformly bounded on compacts etc.), we obtain an expansion of the form
$$
\sqrt n(T_n-\theta)=\xi_0+\xi_1\frac1{\sqrt n}+\dots+\xi_{k-1}\biggl(\frac1{\sqrt n}\biggr)^{k-1}+\widetilde\xi_{k,n}\biggl(\frac1{\sqrt n}\biggr)^k,
$$
where $\xi_\theta=\Delta_1/I(\theta)$, $I(\theta)$ is Fischer's information quantity, $\xi_i$ are polynomials in $\Delta_1,\dots,\Delta_{i+1}$,
$$
\mathbf P_\theta\{|\widetilde\xi_{k,n}|>n^\delta\}=O\bigl(n^{-\frac{k-1}2-C^\delta}\bigr)
$$
for each sufficiently small $\delta>0$ uniformly on compacts. This expansion implies asymptotic expansions of $\mathbf E_\theta(\sqrt n(T_n-\theta))^m$ and $\mathbf P_\theta\{\sqrt n(T_n-\theta)<z\}$.
Received: 06.06.1974
Citation:
S. I. Gusev, “Asymptotic expansions associated with some statistical estimates in the smooth case. I. Decompositions of random variables”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 488–514; Theory Probab. Appl., 20:3 (1976), 470–498
Linking options:
https://www.mathnet.ru/eng/tvp3181 https://www.mathnet.ru/eng/tvp/v20/i3/p488
|
Statistics & downloads: |
Abstract page: | 188 | Full-text PDF : | 84 |
|