Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 1, Pages 191–194 (Mi tvp3176)  

This article is cited in 19 scientific papers (total in 19 papers)

Short Communications

On a generalization of the best choice problem

M. L. Nikolaev

Kazan
Abstract: Suppose we have to choose two objects from a finite set which consists of $N$ objects. Let the set be ordered by quality. Let us enumerate the objects in the order in which we observe them. After observing $a_s$ we know comparative qualities of $a_1,a_2,\dots,a_s$ but we know nothing about the quality of the remaining $N-s$ objects. While observing $a_s$ we can accept it (thus making the first choice) or reject it (then it will be impossible to return to it). We find an optimal policy which provides the greatest probability of choosing two best objects and describe its asymptotical behaviour as $N\to\infty$.
Received: 15.06.1975
Revised: 30.03.1976
English version:
Theory of Probability and its Applications, 1977, Volume 22, Issue 1, Pages 187–190
DOI: https://doi.org/10.1137/1122023
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. L. Nikolaev, “On a generalization of the best choice problem”, Teor. Veroyatnost. i Primenen., 22:1 (1977), 191–194; Theory Probab. Appl., 22:1 (1977), 187–190
Citation in format AMSBIB
\Bibitem{Nik77}
\by M.~L.~Nikolaev
\paper On a~generalization of the best choice problem
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 1
\pages 191--194
\mathnet{http://mi.mathnet.ru/tvp3176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=436309}
\zmath{https://zbmath.org/?q=an:0377.60048}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 22
\issue 1
\pages 187--190
\crossref{https://doi.org/10.1137/1122023}
Linking options:
  • https://www.mathnet.ru/eng/tvp3176
  • https://www.mathnet.ru/eng/tvp/v22/i1/p191
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :183
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024