|
Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 4, Pages 782–795
(Mi tvp3112)
|
|
|
|
This article is cited in 32 scientific papers (total in 32 papers)
On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales
L. I. Gal'čuk Moscow
Abstract:
Let $a=(a_t)$, $t\in[0,\infty[$, be a predictable process with locally integrable variation, $m=(m_t)$ be a continuous local martingale, $p$ be a stochastic integer-valued measure on $\mathfrak B([0,\infty[)\times\mathfrak B(R^d\setminus\{0\})$ and $\lambda$ be a dual predictable projection of $p$. The processes $a$ and $m$ take values in $R^d$, $d\ge 1$.
The uniqueness and existence theorem is proved lor the solutions of a stochastic integral equation
\begin{gather*}
Y_t(\omega)=N_t(\omega)+\int_0^t\sum_{j=1}^df^j(\omega,s,Y_{s-}(\omega))\,da_s^j(\omega)+
\int_0^t\sum_{j=1}^dg^j(\omega,s,Y_{s-}(\omega))\,dm_s^j(\omega)+\\
\int_0^t\int_{|u|\le 1}h(\omega,s,u,Y_{s-}(\omega))(p-\lambda)(\omega,ds,du)+\\
\int_0^t\int_{|u|>1}h(\omega,s,u,Y_{s-}(\omega))p(\omega,ds,du),
\end{gather*}
where $N=(N_t)$ is a known process the paths of which are right-hand continuous and have left-hand limits. The functions $f(\omega,s,x)$, $g(\omega,s,x)$, $h(\omega,s,u,x)$ satisfy the Lipschitz conditions in $x$ and are predictable in other variables.
Received: 04.01.1977
Citation:
L. I. Gal'čuk, “On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales”, Teor. Veroyatnost. i Primenen., 23:4 (1978), 782–795; Theory Probab. Appl., 23:4 (1979), 751–763
Linking options:
https://www.mathnet.ru/eng/tvp3112 https://www.mathnet.ru/eng/tvp/v23/i4/p782
|
|