Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 4, Pages 782–795 (Mi tvp3112)  

This article is cited in 31 scientific papers (total in 31 papers)

On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales

L. I. Gal'čuk

Moscow
Abstract: Let $a=(a_t)$, $t\in[0,\infty[$, be a predictable process with locally integrable variation, $m=(m_t)$ be a continuous local martingale, $p$ be a stochastic integer-valued measure on $\mathfrak B([0,\infty[)\times\mathfrak B(R^d\setminus\{0\})$ and $\lambda$ be a dual predictable projection of $p$. The processes $a$ and $m$ take values in $R^d$, $d\ge 1$.
The uniqueness and existence theorem is proved lor the solutions of a stochastic integral equation
\begin{gather*} Y_t(\omega)=N_t(\omega)+\int_0^t\sum_{j=1}^df^j(\omega,s,Y_{s-}(\omega))\,da_s^j(\omega)+ \int_0^t\sum_{j=1}^dg^j(\omega,s,Y_{s-}(\omega))\,dm_s^j(\omega)+\\ \int_0^t\int_{|u|\le 1}h(\omega,s,u,Y_{s-}(\omega))(p-\lambda)(\omega,ds,du)+\\ \int_0^t\int_{|u|>1}h(\omega,s,u,Y_{s-}(\omega))p(\omega,ds,du), \end{gather*}
where $N=(N_t)$ is a known process the paths of which are right-hand continuous and have left-hand limits. The functions $f(\omega,s,x)$, $g(\omega,s,x)$, $h(\omega,s,u,x)$ satisfy the Lipschitz conditions in $x$ and are predictable in other variables.
Received: 04.01.1977
English version:
Theory of Probability and its Applications, 1979, Volume 23, Issue 4, Pages 751–763
DOI: https://doi.org/10.1137/1123091
Bibliographic databases:
Language: Russian
Citation: L. I. Gal'čuk, “On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales”, Teor. Veroyatnost. i Primenen., 23:4 (1978), 782–795; Theory Probab. Appl., 23:4 (1979), 751–763
Citation in format AMSBIB
\Bibitem{Gal78}
\by L.~I.~Gal'{\v{c}}uk
\paper On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 4
\pages 782--795
\mathnet{http://mi.mathnet.ru/tvp3112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=516275}
\zmath{https://zbmath.org/?q=an:0422.60047|0391.60057}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 23
\issue 4
\pages 751--763
\crossref{https://doi.org/10.1137/1123091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1978JA77700007}
Linking options:
  • https://www.mathnet.ru/eng/tvp3112
  • https://www.mathnet.ru/eng/tvp/v23/i4/p782
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024