Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 1, Pages 177–188
DOI: https://doi.org/10.4213/tvp309
(Mi tvp309)
 

This article is cited in 36 scientific papers (total in 36 papers)

Short Communications

$\sigma$-localization and $\sigma$-martingales

J. Kallsen

Albert Ludwigs University of Freiburg
References:
Abstract: This paper introduces the concept of $\sigma$-localization, which is a generalization of localization in the general theory of stochastic processes. The $\sigma$-localized class derived from the set of martingales is the class of $\sigma$-martingales, which plays an important role in mathematical finance. These processes and the corresponding $\sigma$-martingale measures are considered in detail. By extending the stochastic integral with respect to compensated random measures, a canonical representation of $\sigma$-martingales as for local martingales is derived.
Keywords: $\sigma$-localization, $\sigma$-martingale, stochastic integral, canonical representation, $\sigma$-martingale measure.
Received: 06.09.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 1, Pages 152–163
DOI: https://doi.org/10.1137/S0040585X980312
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Kallsen, “$\sigma$-localization and $\sigma$-martingales”, Teor. Veroyatnost. i Primenen., 48:1 (2003), 177–188; Theory Probab. Appl., 48:1 (2004), 152–163
Citation in format AMSBIB
\Bibitem{Kal03}
\by J.~Kallsen
\paper $\sigma$-localization and $\sigma$-martingales
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 1
\pages 177--188
\mathnet{http://mi.mathnet.ru/tvp309}
\crossref{https://doi.org/10.4213/tvp309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2013413}
\zmath{https://zbmath.org/?q=an:1069.60042}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 1
\pages 152--163
\crossref{https://doi.org/10.1137/S0040585X980312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220694300011}
Linking options:
  • https://www.mathnet.ru/eng/tvp309
  • https://doi.org/10.4213/tvp309
  • https://www.mathnet.ru/eng/tvp/v48/i1/p177
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024