Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 2, Pages 331–339 (Mi tvp3040)  

This article is cited in 45 scientific papers (total in 45 papers)

Time-sharing service systems. II

G. P. Klimov

Moscow
Abstract: The paper shows how to find the service order that minimizes an additive loss functional.
Consider a characteristical result (see example 3). Independent Poisson inputs come to a service system. The service time of the $i$-th item of the input has distribution function $B_i(x)$. Interruption of service is possible. Let $c_i(t)$ be the cost of waiting in the time unit for the $(i,t)$-item, i. e. for the $i$-th item of the input which has been served for the period of time equal to $t\ge 0$. Let each $(i,t)$-item have now a priority index.
$$ R_i(t)=\sup_{x>t}\biggl\{[c_i(t)(1-B_i(t))-c_i(x)(1-B_i(x))]\biggl[\int_t^x(1-B_i(u))\,du\biggr]^{-1}\biggr\}. $$
Then the optimal service order (that minimizes the mean loss in the unit time in stationary regime) is the following: those items should have priority which have the maximum priority index. In particular, if $\gamma_i(t)$ is the mean time necessary to complete the service of the $(i,t)$-item and, for each $i$, the function $c_i(t)/\gamma_i(t)$ is non-decreasing as a function of $t$, it means that $R_i(t)=c_i(t)/\gamma_i(t)$.
Received: 10.05.1976
English version:
Theory of Probability and its Applications, 1979, Volume 23, Issue 2, Pages 314–321
DOI: https://doi.org/10.1137/1123034
Bibliographic databases:
Language: Russian
Citation: G. P. Klimov, “Time-sharing service systems. II”, Teor. Veroyatnost. i Primenen., 23:2 (1978), 331–339; Theory Probab. Appl., 23:2 (1979), 314–321
Citation in format AMSBIB
\Bibitem{Kli78}
\by G.~P.~Klimov
\paper Time-sharing service systems.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 2
\pages 331--339
\mathnet{http://mi.mathnet.ru/tvp3040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=499062}
\zmath{https://zbmath.org/?q=an:0421.60085|0388.60096}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 23
\issue 2
\pages 314--321
\crossref{https://doi.org/10.1137/1123034}
Linking options:
  • https://www.mathnet.ru/eng/tvp3040
  • https://www.mathnet.ru/eng/tvp/v23/i2/p331
    Cycle of papers
    This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :137
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024