Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 2, Pages 295–312 (Mi tvp3038)  

This article is cited in 15 scientific papers (total in 15 papers)

On the central limit theorem for Markov chains

В. A. Lifšic

Leningrad
Abstract: Let, for each $n=1,2,\dots$, random variables $X_{ns}$, $1\le s\le n$, form a (non-homogeneous) Markov chain, $\mathbf EX_{ns}=0$. Let $\mathscr B_{ns}$ be the $\sigma$-algebra generated by $X_{ns}$ and $\beta_{nt}$ be the maximal correlation coefficient between $\mathscr B_{nt}$ and $\mathscr B_{n,t+1}$. Denote
\begin{gather*} S_n=\sum_sX_{ns},\quad F_n(x)=\mathbf P\{S_n<x\sqrt{\mathbf DS_n}\},\\ F_{ns}(x)=\mathbf\{X_{ns}<x\},\quad\beta_n=\max_t\beta_{nt}. \end{gather*}
Theorem 3. {\it If $0<c<\mathbf DX_{ns}<C<\infty$ and, for each $r>0$,
$$ \frac{1}{n(1-\beta_n)^2}\sum_s\int_{|y|>y\sqrt n(1-\beta_n)^{3/2}}y^2F_{ns}(dy)\to 0,\ n\to\infty, $$
then $F_n(x)$ converges to the standard normal distribution function.}
We also consider (in Theorem 9) the case of a stationary Markov chain under condition $\beta_n=1$ ($n=1,2,\dots$).
Received: 15.12.1975
English version:
Theory of Probability and its Applications, 1979, Volume 23, Issue 2, Pages 279–296
DOI: https://doi.org/10.1137/1123032
Bibliographic databases:
Language: Russian
Citation: В. A. Lifšic, “On the central limit theorem for Markov chains”, Teor. Veroyatnost. i Primenen., 23:2 (1978), 295–312; Theory Probab. Appl., 23:2 (1979), 279–296
Citation in format AMSBIB
\Bibitem{Lif78}
\by В.~A.~Lif{\v s}ic
\paper On the central limit theorem for Markov chains
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 2
\pages 295--312
\mathnet{http://mi.mathnet.ru/tvp3038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=488235}
\zmath{https://zbmath.org/?q=an:0422.60052|0389.60047}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 23
\issue 2
\pages 279--296
\crossref{https://doi.org/10.1137/1123032}
Linking options:
  • https://www.mathnet.ru/eng/tvp3038
  • https://www.mathnet.ru/eng/tvp/v23/i2/p295
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024