Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 1, Pages 204–209 (Mi tvp3028)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations

T. P. Mirošničenko

Moscow
Full-text PDF (405 kB) Citations (1)
Abstract: The estimation problem of an unknown random parameter $\theta=\theta(\omega)$ is studied in the case when $\theta$ takes values 1 and 0 with probabilities $\pi_0$, $1-\pi_0$, respectively, and the observed process is
$$ \xi_t(\omega)=r\theta(\omega)t+\sigma W_t(\omega),\qquad\sigma>0,\qquad r\ne 0,\qquad t\ge 0, $$
where $W$ is a standard Wiener process.
Denote by $\tau=\tau(\omega)$ a Markov time with respect to the family of $\sigma$-algebras $\mathscr F_{\tau}^{\xi}=\sigma\{\xi_s,\,s\le t\}$, and by $d=d(\omega)$ a decision function which is $\mathscr F_{\tau+m}^{\xi}$-measurable, where $m\ge 0$ is the delay time.
We find a pair $(\tau,d)$ which minimizes
$$ \mathbf M[c\tau+a\chi_{(d=0,\theta=1)}+b\chi_{(d=1,\theta=0)}], $$
where $a$, $b$, $c$ are positive constants, $\chi_A$ is the characterictic function of a set $A$ .
Received: 28.04.1976
English version:
Theory of Probability and its Applications, 1978, Volume 23, Issue 1, Pages 195–201
DOI: https://doi.org/10.1137/1123022
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. P. Mirošničenko, “A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations”, Teor. Veroyatnost. i Primenen., 23:1 (1978), 204–209; Theory Probab. Appl., 23:1 (1978), 195–201
Citation in format AMSBIB
\Bibitem{Mir78}
\by T.~P.~Miro{\v s}ni{\v{c}}enko
\paper A sequential test for two simple hypotheses about the mean of a~Wiener process with delayed observations
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 1
\pages 204--209
\mathnet{http://mi.mathnet.ru/tvp3028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=483229}
\zmath{https://zbmath.org/?q=an:0425.62064|0396.62065}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 23
\issue 1
\pages 195--201
\crossref{https://doi.org/10.1137/1123022}
Linking options:
  • https://www.mathnet.ru/eng/tvp3028
  • https://www.mathnet.ru/eng/tvp/v23/i1/p204
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024