|
Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 1, Pages 161–169
(Mi tvp3021)
|
|
|
|
This article is cited in 12 scientific papers (total in 12 papers)
Short Communications
The recurrency of oscillating random walks
B. A. Rogozin, S. G. Foss Novosibirsk
Abstract:
Let $Y=\{y_n\}_{n=0}^{\infty}$ be an oscillating random walk ([1]):
$$
y_0=0,\qquad y_{n+1}-y_n=
\begin{cases}
\xi'_{n+1},&y_n\le 0,\\
\xi''_{n+1},&y_n>0,
\end{cases}
\qquad(n=1,2,\dots),
$$
$\{\xi'_n\}_{n=1}^{\infty}$ and $\{\xi''_n\}_{n=1}^{\infty}$ be two sequences of independent identically distributed, in each sequence, random variables with values in the set $\{0,\pm 1,\pm 2,\dots\}$,
\begin{gather*}
S'_0=S''_0=0,\\
S'_n=\sum_{k=1}^n\xi'_k,\qquad S''_n=\sum_{k=1}^n\xi''_k,\qquad n=1,2,\dots
\end{gather*}
The random walks $S'_n=\{S'_n\}_{n=0}^{\infty}$ and $S''_n=\{S''_n\}_{n=0}^{\infty}$ are aperiodic. It is shown that $Y$ can be transient in the case $\mathbf M\xi'_1=\mathbf M\xi''_1=0$. A recurrency condition for $Y$ is obtained when $S'$ and $S''$ are stable random walks.
Received: 09.06.1976
Citation:
B. A. Rogozin, S. G. Foss, “The recurrency of oscillating random walks”, Teor. Veroyatnost. i Primenen., 23:1 (1978), 161–169; Theory Probab. Appl., 23:1 (1978), 155–162
Linking options:
https://www.mathnet.ru/eng/tvp3021 https://www.mathnet.ru/eng/tvp/v23/i1/p161
|
|