|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 2, Pages 223–238
(Mi tvp3018)
|
|
|
|
This article is cited in 124 scientific papers (total in 124 papers)
On a generalization of stochastic integral
A. V. Skorokhod Kiev
Abstract:
Let $\xi$ be a Gaussian random variable in a separable Hilbert space $H$ and $L$ be the space of random variables $\eta$ in $H$ with $\mathbf M|\eta|^2<\infty$. In the paper, the integral $\langle\eta,\xi\rangle$ is introduced and its properties are investigated. If $H$ is the space of those functions $f(x)$ on a measurable space $(X,\mathfrak B)$ for which
$$
\int f^2(x)m(dx)<\infty
$$
and $\mu$ is a Gaussian measure on $\mathfrak B$ with
$$
\mathbf M\mu(A)\mu(B)=m(A\cap B),
$$
then the integral
$$
\langle\eta(\,\cdot\,),\mu\rangle=\int\eta(x)\mu(dx).
$$
Received: 15.01.1974
Citation:
A. V. Skorokhod, “On a generalization of stochastic integral”, Teor. Veroyatnost. i Primenen., 20:2 (1975), 223–238; Theory Probab. Appl., 20:2 (1976), 219–233
Linking options:
https://www.mathnet.ru/eng/tvp3018 https://www.mathnet.ru/eng/tvp/v20/i2/p223
|
Statistics & downloads: |
Abstract page: | 861 | Full-text PDF : | 469 |
|