|
Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 1, Pages 143–148
(Mi tvp2983)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
On optimal stopping of Wiener process with incomplete data
H. Fährmann GDR
Abstract:
We consider the optimal stopping problem for a Wiener process $W$ with reward $g(t,x)=x/(1+t)$ under the assumption that only the process
$$
\xi_t^{\varepsilon}=\int_0^t W_s\,ds+\varepsilon\widetilde W_t
$$
is observed, where $\varepsilon>0$ and $\widetilde W$ is a Wiener process independent of $W$.
The convergence rate of the optimal mean reward $s^{\varepsilon}$ in this «$\varepsilon$-problem» to the optimal mean reward $s^0$ in the «0-problem» when $\varepsilon\to 0$ turns out to be of order $\sqrt{\varepsilon}$. It is shown that the observation domain is limited by a function for which an equation is derived.
Received: 05.03.1976
Citation:
H. Fährmann, “On optimal stopping of Wiener process with incomplete data”, Teor. Veroyatnost. i Primenen., 23:1 (1978), 143–148; Theory Probab. Appl., 23:1 (1978), 138–143
Linking options:
https://www.mathnet.ru/eng/tvp2983 https://www.mathnet.ru/eng/tvp/v23/i1/p143
|
|