|
Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 1, Pages 134–136
(Mi tvp2981)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Short Communications
On a characterization of certain families of measures
Yu. A. Davydov, A. L. Rozin Leningrad
Abstract:
Let $(\xi_t)$, $t\in[0,1]$, be a measurable stochastic process. Put
$$
\mu_t(A)=\int_0^t 1_A(\xi_s)\,ds\qquad A\in\mathscr B,
$$
where $\mathscr B$ is the Borel $\sigma$-algebra in $R^1$. It is easy to see that the family has the following two properties:
1) for any $A\in\mathscr B$ the function $t\rightsquigarrow\mu_t(A)$ is non-decreasing;
2) for any $t\in[0,1]$, $\mu_t(R^1)=t$.
We give a characterization of families $(\mu_t)$, with properties 1) and 2), which are generated by a stochastic process.
Received: 19.02.1976
Citation:
Yu. A. Davydov, A. L. Rozin, “On a characterization of certain families of measures”, Teor. Veroyatnost. i Primenen., 23:1 (1978), 134–136; Theory Probab. Appl., 23:1 (1978), 130–132
Linking options:
https://www.mathnet.ru/eng/tvp2981 https://www.mathnet.ru/eng/tvp/v23/i1/p134
|
|