Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 3, Pages 632–643 (Mi tvp2947)  

Short Communications

On a game random walk on the line

B. G. Pittel'

Leningrad
Abstract: Let $I$ and $J$ be two finite sets, and $X_{ij}(r)$, $Y_{ij}(r)$ ($r=1,2,\dots,(i,j)\in I\times J$) be random variables (independent for different values of $r$) with distribution functions $G_{ij}(x)$ and $F_{ij}(x)$ respectively. The game consists of a sequence of sets. At each set $r=1,2,\dots,$ player 1 (player 2) chooses a probability distribution on $I(J)$ depending on observed values of $X_0,Z_0,\dots,X_{r-1},Z_{r-1}$, where
$$ X_\alpha=X_{\alpha-1}+X_{i_\alpha j_\alpha},\quad Z_\alpha=Z_{\alpha-1}-Y_{i_\alpha j_\alpha},\quad\alpha=1,2,\dots;\quad X_0=0,\quad Z_0=t $$
($t$ is the initial resource of the game), $\nu$ is the stochastic duration of the game equal to $\min\{s,\min(r\mid Z_r<0)\}$ ($s$ is the maximal duration of the game given a priori) and the total gain of player 1 is $X_\nu$.
Existence of the value of the game $H_s(t)$ is proved. Under general assumptions, it is proved that $\widehat H(t)=\lim\limits_{s\to\infty}H_s(t)$ is a special solution of a minimax analogue of a renewal equation and
$$ \widehat H(t)=\lambda t+o(t),\quad\operatorname{val}(EX_{ij}-\lambda EY_{ij})=0,\quad\lambda>0. $$
It is also proved that $\widehat H(t)$ is the unique solution of this equation in the class of all quasilinear (non-negative quasilinear) solutions provided $\min\limits_{i,j}EY_{ij}>0(\sup\limits_{\gamma>-\lambda}\min\limits_{i,j}(EX_{ij}+\gamma EY_{ij})>0)$, and $\widehat H(t)=\lambda t+o(t^\varepsilon)$ for any $\varepsilon>0$, if, in addition
$$ E(Y_{ij}^+)^2<\infty,\quad Y_{ij}^+=\max(0,Y_{ij}),\quad(i,j)\in I\times J. $$
Received: 24.12.1972
English version:
Theory of Probability and its Applications, 1975, Volume 19, Issue 3, Pages 604–614
DOI: https://doi.org/10.1137/1119070
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. G. Pittel', “On a game random walk on the line”, Teor. Veroyatnost. i Primenen., 19:3 (1974), 632–643; Theory Probab. Appl., 19:3 (1975), 604–614
Citation in format AMSBIB
\Bibitem{Pit74}
\by B.~G.~Pittel'
\paper On a~game random walk on the line
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 3
\pages 632--643
\mathnet{http://mi.mathnet.ru/tvp2947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=359948}
\zmath{https://zbmath.org/?q=an:0322.90087}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 19
\issue 3
\pages 604--614
\crossref{https://doi.org/10.1137/1119070}
Linking options:
  • https://www.mathnet.ru/eng/tvp2947
  • https://www.mathnet.ru/eng/tvp/v19/i3/p632
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024