|
Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 3, Pages 632–643
(Mi tvp2947)
|
|
|
|
Short Communications
On a game random walk on the line
B. G. Pittel' Leningrad
Abstract:
Let $I$ and $J$ be two finite sets, and $X_{ij}(r)$, $Y_{ij}(r)$ ($r=1,2,\dots,(i,j)\in I\times J$) be random variables (independent for different values of $r$) with distribution functions $G_{ij}(x)$ and $F_{ij}(x)$ respectively. The game consists of a sequence of sets. At each set $r=1,2,\dots,$ player 1 (player 2) chooses a probability distribution on $I(J)$ depending on observed values of $X_0,Z_0,\dots,X_{r-1},Z_{r-1}$, where
$$
X_\alpha=X_{\alpha-1}+X_{i_\alpha j_\alpha},\quad Z_\alpha=Z_{\alpha-1}-Y_{i_\alpha j_\alpha},\quad\alpha=1,2,\dots;\quad X_0=0,\quad Z_0=t
$$
($t$ is the initial resource of the game), $\nu$ is the stochastic duration of the game equal to $\min\{s,\min(r\mid Z_r<0)\}$ ($s$ is the maximal duration of the game given a priori) and the total gain of player 1 is $X_\nu$.
Existence of the value of the game $H_s(t)$ is proved. Under general assumptions, it is proved that $\widehat H(t)=\lim\limits_{s\to\infty}H_s(t)$ is a special solution of a minimax analogue of a renewal equation and
$$
\widehat H(t)=\lambda t+o(t),\quad\operatorname{val}(EX_{ij}-\lambda EY_{ij})=0,\quad\lambda>0.
$$
It is also proved that $\widehat H(t)$ is the unique solution of this equation in the class of all quasilinear (non-negative quasilinear) solutions provided $\min\limits_{i,j}EY_{ij}>0(\sup\limits_{\gamma>-\lambda}\min\limits_{i,j}(EX_{ij}+\gamma EY_{ij})>0)$, and $\widehat H(t)=\lambda t+o(t^\varepsilon)$ for any $\varepsilon>0$, if, in addition
$$
E(Y_{ij}^+)^2<\infty,\quad Y_{ij}^+=\max(0,Y_{ij}),\quad(i,j)\in I\times J.
$$
Received: 24.12.1972
Citation:
B. G. Pittel', “On a game random walk on the line”, Teor. Veroyatnost. i Primenen., 19:3 (1974), 632–643; Theory Probab. Appl., 19:3 (1975), 604–614
Linking options:
https://www.mathnet.ru/eng/tvp2947 https://www.mathnet.ru/eng/tvp/v19/i3/p632
|
|