Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1996, Volume 41, Issue 2, Pages 323–335
DOI: https://doi.org/10.4213/tvp2937
(Mi tvp2937)
 

This article is cited in 2 scientific papers (total in 2 papers)

Some problems in probabilistic tomography

D. Applegatea, J. Reedsa, S. Scheinbergb, L. Sheppa, P. Shora

a AT&T Bell Laboratories, Murray Hill, NJ
b U. C. Irvine, Math Department
Full-text PDF (684 kB) Citations (2)
Abstract: Given probability distributions $F_1 , F_2 , \ldots , F_k$ on $\mathbb R$ and distinct directions $\theta_1, \ldots , \theta_k$, one may ask whetherthere is a probability measure $\mu$ on $\mathbb R^2$ such that the marginal of $\mu$ in direction $\theta_j$ is $F_j$, $j=1, \ldots , k$. For example for $k=3$ we ask what the marginal of $\mu$ at $45^\circ$ can be if the $x$ and $y$ marginals are each say standard normal? In probabilistic language, if $X$ and $Y$ are each standard normal with an arbitrary joint distribution, what can the distribution of $X+Y$ or $X-Y$ be? This type of question is familiar to probabilists and is also familiar (except perhaps in that $\mu$ is positive) to tomographers, but is difficult to answer in special cases. The set of distributions for $Z = X-Y$ is a convex and compact set, $C$, which contains the single point mass $Z \equiv 0$ since $X \equiv Y$, standard normal, is possible. We show that $Z$ can be 3-valued, $Z=0$, $\pm a$ for any $a$, each with positive probability, but $Z$ cannot have any (genuine) two-point distribution. Using numerical linear programming we present convincing evidence that $Z$ can be uniform on the interval $[-\varepsilon,\varepsilon]$ for $\varepsilon$ small and give estimates for the largest such $\varepsilon$. The set of all extreme points of $C$ seems impossible to determine explicitly.
We also consider the more basic question of finding the extreme measures on the unit square with uniform marginals on both coordinates, and show that not every such measure has a support which has only one point on each horizontal or vertical line, which seems surprising.
Keywords: marginal distributions, extreme point, Radon.
Received: 04.07.1994
English version:
Theory of Probability and its Applications, 1997, Volume 41, Issue 2, Pages 199–209
DOI: https://doi.org/10.1137/S0040585X97975435
Bibliographic databases:
Language: English
Citation: D. Applegate, J. Reeds, S. Scheinberg, L. Shepp, P. Shor, “Some problems in probabilistic tomography”, Teor. Veroyatnost. i Primenen., 41:2 (1996), 323–335; Theory Probab. Appl., 41:2 (1997), 199–209
Citation in format AMSBIB
\Bibitem{AppReeSch96}
\by D.~Applegate, J.~Reeds, S.~Scheinberg, L.~Shepp, P.~Shor
\paper Some problems in probabilistic tomography
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 2
\pages 323--335
\mathnet{http://mi.mathnet.ru/tvp2937}
\crossref{https://doi.org/10.4213/tvp2937}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445755}
\zmath{https://zbmath.org/?q=an:0881.60101}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 2
\pages 199--209
\crossref{https://doi.org/10.1137/S0040585X97975435}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XM80000001}
Linking options:
  • https://www.mathnet.ru/eng/tvp2937
  • https://doi.org/10.4213/tvp2937
  • https://www.mathnet.ru/eng/tvp/v41/i2/p323
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024