Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 3, Pages 583–588 (Mi tvp2929)  

This article is cited in 148 scientific papers (total in 148 papers)

Short Communications

Approximate integration of stochastic differential equations

G. N. Mil'shtein

Moscow
Abstract: For the Ito equation
$$ dX=a(t,X)\,dt+\sigma(t,X)\,dw,\quad X(t_0)=x,\quad t_0\le t\le t_0+T $$
($w(t)$ is a standard Wiener process) the following approximation is proposed:
\begin{gather*} \overline X(t_0)=X(t_0),\quad\overline X(t_0+(k+1)h)= \\ =\overline X(t_0+kh)+\overline\sigma w_{k+1}+\biggl(\overline a-\frac12\overline\sigma\frac{\overline\partial\sigma}{\partial x}\biggr)h+\frac12\overline\sigma\frac{\overline\partial\sigma}{\partial x}w_{k+1}^2 \end{gather*}
where $h=T/m$; $k=0,1,\dots,m-1$; $w_1,\dots,w_m$ are independent normal $N(0,h)$ variables. Here the stroke means that the corresponding function is computed at point $(t_0+kh,X(t_0+kh))$.
It is shown that $\mathbf M(X(t_0+T)-\overline X(t_0+T))^2=O(h^2)$.
The results are generalized to systems of stochastic differential equations.
Possibilities of improving the accuracy of the approximation are discussed.
Received: 23.09.1973
English version:
Theory of Probability and its Applications, 1975, Volume 19, Issue 3, Pages 557–562
DOI: https://doi.org/10.1137/1119062
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. N. Mil'shtein, “Approximate integration of stochastic differential equations”, Teor. Veroyatnost. i Primenen., 19:3 (1974), 583–588; Theory Probab. Appl., 19:3 (1975), 557–562
Citation in format AMSBIB
\Bibitem{Mil74}
\by G.~N.~Mil'shtein
\paper Approximate integration of stochastic differential equations
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 3
\pages 583--588
\mathnet{http://mi.mathnet.ru/tvp2929}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=356225}
\zmath{https://zbmath.org/?q=an:0314.60039}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 19
\issue 3
\pages 557--562
\crossref{https://doi.org/10.1137/1119062}
Linking options:
  • https://www.mathnet.ru/eng/tvp2929
  • https://www.mathnet.ru/eng/tvp/v19/i3/p583
  • This publication is cited in the following 148 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024