Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 3, Pages 457–471 (Mi tvp2920)  

This article is cited in 17 scientific papers (total in 17 papers)

Extension of measures and stochastic equations

M. P. Ershov

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract: E. Szpilrajn-Marczewski [2] constucted a measure on a sub-$\sigma$-algebra of the Borel $\sigma$-algebra in a complete separable metric space which could not be extended to the Borel $\sigma$-algebra. That measure was not separable. In connection with this example, E. Szpilrajn-Marczewski [3] posed the following problem: whether any separable measure on the $\sigma$-algebra generated by a family of Borel sets in a complete separable metric sprace can be extended to the whole Borel $\sigma$-algebra.
In the paper, this problem is answered, in general, negatively. However, it is proved that an extension does exist under the condition that the $\sigma$-algebra the original measure is defined on is countably generated.
The problem of extending a measure is shown to be equivalent to that of solving a stochastic equation: given a measurable mapping $F$ of a measurable space ($X$, $\mathscr X$) into a measure space ($Y$, $\mathscr Y$, $\nu$), a measure $\mu$ on ($X$, $\mathscr X$) is called a solution of the stochastic equation
$$ F\circ\mu=\nu $$
if, for any $B\in\mathscr Y$ $\mu(F^{-1}\circ B)=\nu B$.
For sufficiently “respectable” spaces ($X$, $\mathscr X$) and ($Y$, $\mathscr Y$), the condition
$$ (F^{-1}\circ B)\ne\varnothing\quad\forall B\in\mathscr Y\colon\nu(B)>0 $$
is proved to be sufficient (and obviously necessary) for the equation $F\circ\mu=\nu$ to have at least one solution.
The problem of uniqueness of a solution of the equation $F\circ\mu=\nu $, respectively, of an extension of a given measure is also investigated.
Received: 03.09.1973
English version:
Theory of Probability and its Applications, 1975, Volume 19, Issue 3, Pages 431–444
DOI: https://doi.org/10.1137/1119053
Bibliographic databases:
Language: Russian
Citation: M. P. Ershov, “Extension of measures and stochastic equations”, Teor. Veroyatnost. i Primenen., 19:3 (1974), 457–471; Theory Probab. Appl., 19:3 (1975), 431–444
Citation in format AMSBIB
\Bibitem{Ers74}
\by M.~P.~Ershov
\paper Extension of measures and stochastic equations
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 3
\pages 457--471
\mathnet{http://mi.mathnet.ru/tvp2920}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=354981}
\zmath{https://zbmath.org/?q=an:0312.28001}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 19
\issue 3
\pages 431--444
\crossref{https://doi.org/10.1137/1119053}
Linking options:
  • https://www.mathnet.ru/eng/tvp2920
  • https://www.mathnet.ru/eng/tvp/v19/i3/p457
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :141
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024