Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 2, Pages 375–385
DOI: https://doi.org/10.4213/tvp290
(Mi tvp290)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the problem of stochastic integral representations of functionals of the Brownian motion. I

A. N. Shiryaeva, M. Yorb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Université Pierre & Marie Curie, Paris VI
References:
Abstract: For functionals $S=S(\omega)$ of the Brownian motion $B$, we propose a method for finding stochastic integral representations based on the Itô formula for the stochastic integral associated with $B$. As an illustration of the method, we consider functionals of the “maximal” type: $S_T$, $S_{T_{-a}}$, $S_{g_T}$, and $S_{\theta_T}$, where $S_T=\max_{t\le T}B_t$ , $S_{T_{-a}}=\max_{t\le T_{-a}}B_t$ with $T_{-a}=\inf\{t>0: B_t=-a\}$, $a>0$, and $S_{g_T}=\max_{t\le g_T} B_t$, $S_{\theta_T}=\max_{t\le \theta_T}B_t$, $g_T$ and $\theta_T$ are non-Markov times: $g_T$ is the time of the last zero of Brownian motion on $[0,T]$ and $\theta_T$ is a time when the Brownian motion achieves its maximal value on $[0,T]$.
Keywords: Brownian motion, Markov time, non-Markov time, stochastic integral, stochastic integral representation, Itô formula.
Received: 01.12.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 2, Pages 304–313
DOI: https://doi.org/10.1137/S0040585X9780427
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, M. Yor, “On the problem of stochastic integral representations of functionals of the Brownian motion. I”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 375–385; Theory Probab. Appl., 48:2 (2004), 304–313
Citation in format AMSBIB
\Bibitem{ShiYor03}
\by A.~N.~Shiryaev, M.~Yor
\paper On the problem of stochastic integral representations of functionals of the Brownian motion.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 375--385
\mathnet{http://mi.mathnet.ru/tvp290}
\crossref{https://doi.org/10.4213/tvp290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2015458}
\zmath{https://zbmath.org/?q=an:1057.60057}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 304--313
\crossref{https://doi.org/10.1137/S0040585X9780427}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100008}
Linking options:
  • https://www.mathnet.ru/eng/tvp290
  • https://doi.org/10.4213/tvp290
  • https://www.mathnet.ru/eng/tvp/v48/i2/p375
    Cycle of papers
    This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :192
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024