|
Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 2, Pages 387–391
(Mi tvp2864)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
The behaviour of sums of independent random variables
V. M. Kruglov M. V. Lomonosov Moscow State University
Abstract:
In the paper, a necessary and sufficient condition is given in order that
$$
-\infty<\varliminf_{n\to\infty}\frac{S_n-mS_n}{a_n}\le\varlimsup\frac{S_n-mS_n}{a_n}<\infty,
$$
where $\{\xi_n\}$ is a sequence of independent random variables, $S_n=\xi_1+\dots+\xi_n$; $m\xi$ is the median of $\xi$; $\{a_n\}$ is an increasing sequence of positive numbers such that there exists, a sequence of indices $\{m_n\}$ for which
$$
1<C_1\le\frac{a_{m_{n+1}}}{a_{m_n}}\le C_2<\infty.
$$
Received: 18.12.1973
Citation:
V. M. Kruglov, “The behaviour of sums of independent random variables”, Teor. Veroyatnost. i Primenen., 19:2 (1974), 387–391; Theory Probab. Appl., 19:2 (1975), 374–379
Linking options:
https://www.mathnet.ru/eng/tvp2864 https://www.mathnet.ru/eng/tvp/v19/i2/p387
|
|