Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 2, Pages 298–316 (Mi tvp2863)  

This article is cited in 2 scientific papers (total in 2 papers)

Damping perturbations of dynamic systems and convergence conditions for recursive stochastic procedures

A. P. Korostelev

Moscow
Abstract: Let dynamic system $\dot x_t=b(x_t)$ in $R^d$ has stable equilibrium state at the point 0. Random perturbations of this system are considered as $dX_t=b(X_t)\,dt+d\zeta(t,X_t)$, where $\zeta(t,x)$ for any $x$ is the process with independent increments which damps when $t\to\infty$. Following [9] we show that $X_t$-paths leave an arbitrary domain $D_0$ containing point 0 during time $T$ after moment $t_0$ with probability the main term of which for $t_0\to\infty$ has the form
$$ \exp\{-g_T(t_0)V_T(D_0)\},\quad g_t(t_0)\to\infty,\quad V_T(D_0)>0. $$
In many cases this probability may be estimated from above and from below by $\exp\{-g(t_0)(V(D_0)\pm h)\}$ with arbitrary small $h>0$. In such a case either $X_t$-paths leave the domain $D_0$ with probability 1 after any moment $t_0$ or stay in $D_0$ with probability which tends to 1 when $t_0\to\infty$. These two possibilities depend on the divergence or convergence of the integral
$$ \int_0^{\infty}\exp\{-g(t_0)V(D_0)\}\,dt_0. $$

The results are applied to the investigation of convergence conditions for some stochastic recursive procedures. In a number of cases for Robbins–Monro and Kiefer–Wolfowitz procedures the necessary and sufficient conditions are obtained.
Received: 18.04.1977
English version:
Theory of Probability and its Applications, 1979, Volume 24, Issue 2, Pages 302–321
DOI: https://doi.org/10.1137/1124036
Bibliographic databases:
Language: Russian
Citation: A. P. Korostelev, “Damping perturbations of dynamic systems and convergence conditions for recursive stochastic procedures”, Teor. Veroyatnost. i Primenen., 24:2 (1979), 298–316; Theory Probab. Appl., 24:2 (1979), 302–321
Citation in format AMSBIB
\Bibitem{Kor79}
\by A.~P.~Korostelev
\paper Damping perturbations of dynamic systems and convergence conditions for recursive stochastic procedures
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 2
\pages 298--316
\mathnet{http://mi.mathnet.ru/tvp2863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532444}
\zmath{https://zbmath.org/?q=an:0405.60064}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 24
\issue 2
\pages 302--321
\crossref{https://doi.org/10.1137/1124036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979KK64200005}
Linking options:
  • https://www.mathnet.ru/eng/tvp2863
  • https://www.mathnet.ru/eng/tvp/v24/i2/p298
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024