|
This article is cited in 5 scientific papers (total in 5 papers)
Estimation of multivariate regression
I. A. Ibragimov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $(X,Y)$ be a random vector whose first component takes on
values in a measurable space $(\mathfrak{X},\mathfrak{A},\mu)$ with measure $\mu$
and $Y$ be a real-valued random variable. Let
$$
f(x)=E\{Y\mid X=x\}
$$
be the regression function of $Y$ on $X$. We consider the
problem of estimating $f(x)$ by observations of $n$ independent
copies of $(X,Y)$ given $f\inF$, where $F$ is an a priori known
set with specified metric characteristics such as
$\varepsilon$-entropy or Kolmogorov widths.
Keywords:
additive regression, nonparametric estimation, regression, regression function.
Received: 15.11.2002
Citation:
I. A. Ibragimov, “Estimation of multivariate regression”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 301–320; Theory Probab. Appl., 48:2 (2004), 256–272
Linking options:
https://www.mathnet.ru/eng/tvp286https://doi.org/10.4213/tvp286 https://www.mathnet.ru/eng/tvp/v48/i2/p301
|
Statistics & downloads: |
Abstract page: | 684 | Full-text PDF : | 200 | References: | 125 |
|