Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 2, Pages 254–273
DOI: https://doi.org/10.4213/tvp284
(Mi tvp284)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $X(n)=X(u,n)$, $n=0,1,\ldots\,$, be a time homogeneous ergodic real-valued Markov chain with transition probability $P(u,B)$ and initial value $u\equiv X(u,0)=X(0)$. We study the asymptotic behavior of the crossing probability of a given boundary $g(k)$, $k=0,1,\ldots,n$, by a trajectory $X(k)$, $k=0,1,\ldots,n$, that is the probability
$$ P\Big\{\max_{k\le n}\big(X(k)-g(k)\big)>0\Big\}, $$
where the boundary $g(\cdot)$ depends, generally speaking, on $n$ and on a growing parameter $x$ in such a way that $\min_{k\le n}g(k)\to\infty$ as $x\to\infty$. The chain is assumed to be partially space-homogeneous, that is there exists $N\ge 0$ such that for $u>N$, $v>N$ the probability $P(u,dv)$ depends only on the difference $v-u$. In addition, it is assumed that there exists $\lambda>0$ such that
$$ \sup_{u\le 0}E e^{(u+\xi(u))\lambda}<\infty,\qquad \sup_{u\ge 0}E e^{\lambda\xi(u)}<\infty, $$
where $\xi(u)=X(u,1)-u$ is the increments of the chain at point $u$ in one step.
The present paper is a continuation of article [A. A. Borovkov, Theory Probab. Appl., 47 (2002), pp. 584–608], in which it is assumed that the tails of the distributions of $\xi(u)$ are regularly varying. Here we establish limit theorems describing under rather broad conditions the asymptotic behavior of the probabilities in question in the domains of large and normal deviations. Besides, asymptotic properties of the regeneration cycles to a positive atom are considered and an analog of the law of iterated logarithm is established.
Keywords: Markov chains, large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.
Received: 17.12.2001
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 2, Pages 226–242
DOI: https://doi.org/10.1137/S0040585X97980361
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, “Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 254–273; Theory Probab. Appl., 48:2 (2004), 226–242
Citation in format AMSBIB
\Bibitem{Bor03}
\by A.~A.~Borovkov
\paper Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 254--273
\mathnet{http://mi.mathnet.ru/tvp284}
\crossref{https://doi.org/10.4213/tvp284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2015452}
\zmath{https://zbmath.org/?q=an:1055.60069}
\elib{https://elibrary.ru/item.asp?id=13449321}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 226--242
\crossref{https://doi.org/10.1137/S0040585X97980361}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100003}
Linking options:
  • https://www.mathnet.ru/eng/tvp284
  • https://doi.org/10.4213/tvp284
  • https://www.mathnet.ru/eng/tvp/v48/i2/p254
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :153
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024