Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 1, Pages 211–213 (Mi tvp2782)  

Short Communications

The relation between Mann–Whitney's statistic and Kendall's correlation coefficient $\tau$

M. G. Gel'berg

Yalta
Abstract: It is shown that Kendall's correlation coefficient may be expressed as follows:
$$ \tau=\frac{4\sum_{s=1}^k\sum_{f=1}^{s-1}U_{sf}-N^2+\sum_{s=1}^kn_{s\cdot}^2}{\sqrt{(N^2-\sum n_{s\cdot}^2)(N^2-\sum n_{\cdot t}^2)}} $$
where $N$ is the sample size $U_sf$ is Mann–Whitney's statistic for the conditional distributions of $Y$ given $X_s$ and $X_f\cdot$.
For $k=l$, $n_{s\cdot}=n_{\cdot t}=N/k$ for all $s$ and $t$, put $\widehat p_{st}=U_{st}/n_{s\cdot}n_{f\cdot}$; then
$$ \tau=2\Biggl[\frac{\sum_{s=1}^k\sum_{t=1}^{s-1}\widehat p_{st}}{1/2k(k-1)}-\frac12\Biggr]. $$
The first term in the brackets is the mean value of the normalized Mann–Whitney's statistic over all paired comparisons of conditional distributions of $Y$.
Received: 30.08.1972
English version:
Theory of Probability and its Applications, 1974, Volume 19, Issue 1, Pages 205–207
DOI: https://doi.org/10.1137/1119023
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. G. Gel'berg, “The relation between Mann–Whitney's statistic and Kendall's correlation coefficient $\tau$”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 211–213; Theory Probab. Appl., 19:1 (1974), 205–207
Citation in format AMSBIB
\Bibitem{Gel74}
\by M.~G.~Gel'berg
\paper The relation between Mann--Whitney's statistic and Kendall's correlation coefficient~$\tau$
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 1
\pages 211--213
\mathnet{http://mi.mathnet.ru/tvp2782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=339394}
\zmath{https://zbmath.org/?q=an:0317.62039}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 19
\issue 1
\pages 205--207
\crossref{https://doi.org/10.1137/1119023}
Linking options:
  • https://www.mathnet.ru/eng/tvp2782
  • https://www.mathnet.ru/eng/tvp/v19/i1/p211
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025