Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 3, Pages 628–632
DOI: https://doi.org/10.4213/tvp278
(Mi tvp278)
 

This article is cited in 10 scientific papers (total in 10 papers)

Short Communications

Poisson approximation via the convolution with Kornya–Presman signed measures

B. Roos

Mathematics Department, University of Leicester
References:
Abstract: We present an upper bound for the total variation distance between the generalized polynomial distribution and a finite signed measure, which is the convolution of two finite signed measures, one of which is of Kornya–Presman type. In the one-dimensional Poisson case, such a finite signed measure was first considered by K. Borovkov and D. Pfeifer [J. Appl. Probab., 33 (1996), pp. 146–155].
We give asymptotic relations in the one-dimensional case, and, as an example, the independent identically distributed record model is investigated.
It turns out that here the approximation is of order $O(n^{-s}(\ln n)^{-{(s+1)/2}})$ for $s$ being a fixed positive integer, whereas in the approximation with simple Kornya–Presman signed measures, we only have the rate $O((\ln n)^{-(s+1)/2})$.
Keywords: asymptotic relation, generalized polynomial distribution, independent and identically distributed record model, Kornya–Presman signed measure, Poisson approximation, total variation distance, upper bound.
Received: 18.02.2003
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 3, Pages 555–560
DOI: https://doi.org/10.1137/S0040585X97980646
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Roos, “Poisson approximation via the convolution with Kornya–Presman signed measures”, Teor. Veroyatnost. i Primenen., 48:3 (2003), 628–632; Theory Probab. Appl., 48:3 (2004), 555–560
Citation in format AMSBIB
\Bibitem{Roo03}
\by B.~Roos
\paper Poisson approximation via the convolution with Kornya--Presman signed measures
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 3
\pages 628--632
\mathnet{http://mi.mathnet.ru/tvp278}
\crossref{https://doi.org/10.4213/tvp278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141358}
\zmath{https://zbmath.org/?q=an:1064.60033}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 3
\pages 555--560
\crossref{https://doi.org/10.1137/S0040585X97980646}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224300900014}
Linking options:
  • https://www.mathnet.ru/eng/tvp278
  • https://doi.org/10.4213/tvp278
  • https://www.mathnet.ru/eng/tvp/v48/i3/p628
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :158
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024