Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1996, Volume 41, Issue 1, Pages 107–132
DOI: https://doi.org/10.4213/tvp2778
(Mi tvp2778)
 

This article is cited in 3 scientific papers (total in 3 papers)

Limit theorems for stopped random sequences II: large deviations

V. K. Malinovskii

Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: Stopped random sequences with record regeneration are considered and upper bounds and approximations of probabilities of large deviations under low moment conditions are obtained. These results generalize those of A. V. Nagaev, S. V. Nagaev, and D. X. Fuk proved in the framework of sums of independent random variables. Particular cases of such sequences are stopped random walks, recurrent Markov renewal processes, and certain procedures of sequential estimation.
Keywords: stopped sequences, large deviations, record regeneration.
Received: 13.06.1992
Revised: 28.07.1995
English version:
Theory of Probability and its Applications, 1997, Volume 41, Issue 1, Pages 70–90
DOI: https://doi.org/10.1137/TPRBAU000041000001000070000001
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. K. Malinovskii, “Limit theorems for stopped random sequences II: large deviations”, Teor. Veroyatnost. i Primenen., 41:1 (1996), 107–132; Theory Probab. Appl., 41:1 (1997), 70–90
Citation in format AMSBIB
\Bibitem{Mal96}
\by V.~K.~Malinovskii
\paper Limit theorems for stopped random sequences~II: large deviations
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 1
\pages 107--132
\mathnet{http://mi.mathnet.ru/tvp2778}
\crossref{https://doi.org/10.4213/tvp2778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404898}
\zmath{https://zbmath.org/?q=an:0888.60027}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 1
\pages 70--90
\crossref{https://doi.org/10.1137/TPRBAU000041000001000070000001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997WQ28100005}
Linking options:
  • https://www.mathnet.ru/eng/tvp2778
  • https://doi.org/10.4213/tvp2778
  • https://www.mathnet.ru/eng/tvp/v41/i1/p107
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :201
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024