Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1996, Volume 41, Issue 1, Pages 31–52
DOI: https://doi.org/10.4213/tvp2772
(Mi tvp2772)
 

This article is cited in 24 scientific papers (total in 24 papers)

Random vectors with values in complex Hilbert spaces

N. N. Vakhaniaa, N. P. Kandelaki

a Muskhelishvili Institute of Computational Mathematics
Abstract: An attempt is made to give a more or less systematic approach to the study of some basic probability concepts related to random vectors with values in a complex Hilbert space. In a natural way, one can associate with such a random vector a pair of random vectors with values in a relevant real Hilbert space, and this yields two possible approaches to describe complex random vectors. These two approaches are actually the same with respect to the measurability problem and the concept of mathematical expectation. The situation is different, however, with regard to problems connected with a covariance operator. The main concept of the paper is a proper random vector the one for which these two approaches give the same results for problems related to covariance operator as well. We study the circle of problems connected with the concept of proper random vectors.
Keywords: complex Gaussian random variable, random vector in a complex Hilbert space, proper decomposition, properrandom vector, Gaussian random vector in narrow and widesense, Schoenberg measures, almost sure orthogonality of random vectors.
Received: 17.02.1995
English version:
Theory of Probability and its Applications, 1997, Volume 41, Issue 1, Pages 116–131
DOI: https://doi.org/10.1137/TPRBAU000041000001000116000001
Bibliographic databases:
Language: Russian
Citation: N. N. Vakhania, N. P. Kandelaki, “Random vectors with values in complex Hilbert spaces”, Teor. Veroyatnost. i Primenen., 41:1 (1996), 31–52; Theory Probab. Appl., 41:1 (1997), 116–131
Citation in format AMSBIB
\Bibitem{VakKan96}
\by N.~N.~Vakhania, N.~P.~Kandelaki
\paper Random vectors with values in complex Hilbert spaces
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 1
\pages 31--52
\mathnet{http://mi.mathnet.ru/tvp2772}
\crossref{https://doi.org/10.4213/tvp2772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404894}
\zmath{https://zbmath.org/?q=an:0888.60006}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 1
\pages 116--131
\crossref{https://doi.org/10.1137/TPRBAU000041000001000116000001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997WQ28100007}
Linking options:
  • https://www.mathnet.ru/eng/tvp2772
  • https://doi.org/10.4213/tvp2772
  • https://www.mathnet.ru/eng/tvp/v41/i1/p31
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :385
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024