|
Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 1, Pages 173–181
(Mi tvp2771)
|
|
|
|
This article is cited in 53 scientific papers (total in 53 papers)
Short Communications
Limit distributions of random variables connected with long duplications in a sequence of independent trials
A. M. Zubkov, V. G. Mikhailov Moscow
Abstract:
Let $X_0,X_1,\dots$ be a sequence of independent trials with $m$ outcomes. We prove limit theorems for the distribution of the number of long duplications
$$
((X_i,X_{i+1},\dots,X_{i+n-1})=(X_j,X_{j+1},\dots,X_{j+n-1}),\quad1\le i<j\le N),
$$
for the distribution of the waiting time until the first duplication of a given length and for the distribution of the maximal duplication length.
Received: 10.05.1973
Citation:
A. M. Zubkov, V. G. Mikhailov, “Limit distributions of random variables connected with long duplications in a sequence of independent trials”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 173–181; Theory Probab. Appl., 19:1 (1974), 172–179
Linking options:
https://www.mathnet.ru/eng/tvp2771 https://www.mathnet.ru/eng/tvp/v19/i1/p173
|
|