Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1996, Volume 41, Issue 1, Pages 3–30
DOI: https://doi.org/10.4213/tvp2769
(Mi tvp2769)
 

This article is cited in 20 scientific papers (total in 20 papers)

Large-deviation probabilities for one-dimensional Markov chains. Part 1: Stationary distributions

A. A. Borovkov, D. A. Korshunov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: In this paper, we consider time-homogeneous and asymptotically space-homogeneous Markov chains that take values on the real line and have an invariant measure. Such a measure always exists if the chain is ergodic. In this paper, we continue the study of the asymptotic properties of $\pi([x,\infty))$ as $x \rightarrow \infty$ for the invariant measure $\pi$, which was started in [A. A. Borovkov, Stochastic Processes in Queueing Theory, Springer-Verlag, New York, 1976], [A. A. Borovkov, Ergodicity and Stability of Stochastic Processes, TVP Science Publishers, Moscow, to appear], and [A. A. Brovkov and D. Korshunov, Ergodicity in a sense of weak convergence, equilibrium-type identities and large deviations for Markov chains, in Probability Theory and Mathematical Statistics, Coronet Books, Philadelphia, 1984, pp. 89–98]. In those papers, we studied basically situations that lead to a purely exponential decrease of $\pi([x,\infty))$. Now we consider two remaining alternative variants: the case of "power" decreasing of $\pi([x,\infty))$ and the "mixed" case when $\pi([x,\infty))$ is asymptotically $l(x)e^{-\beta x}$, where $l(x)$ is an integrable function regularly varying at infinity and $\beta>0$.
Keywords: Markov chain, invariant measure, rough and exact asymptoticbehavior of large-deviation probabilities.
Received: 10.02.1995
English version:
Theory of Probability and its Applications, 1997, Volume 41, Issue 1, Pages 1–24
DOI: https://doi.org/10.1137/TPRBAU000041000001000001000001
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, D. A. Korshunov, “Large-deviation probabilities for one-dimensional Markov chains. Part 1: Stationary distributions”, Teor. Veroyatnost. i Primenen., 41:1 (1996), 3–30; Theory Probab. Appl., 41:1 (1997), 1–24
Citation in format AMSBIB
\Bibitem{BorKor96}
\by A.~A.~Borovkov, D.~A.~Korshunov
\paper Large-deviation probabilities for one-dimensional Markov chains. Part~1: Stationary distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1996
\vol 41
\issue 1
\pages 3--30
\mathnet{http://mi.mathnet.ru/tvp2769}
\crossref{https://doi.org/10.4213/tvp2769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404893}
\zmath{https://zbmath.org/?q=an:0888.60025}
\transl
\jour Theory Probab. Appl.
\yr 1997
\vol 41
\issue 1
\pages 1--24
\crossref{https://doi.org/10.1137/TPRBAU000041000001000001000001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997WQ28100001}
Linking options:
  • https://www.mathnet.ru/eng/tvp2769
  • https://doi.org/10.4213/tvp2769
  • https://www.mathnet.ru/eng/tvp/v41/i1/p3
    Cycle of papers
    This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :191
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024