Abstract:
It is shown that in estimating the density p(x) by means of the statistics (1) the sequence τn=τ0n is optimal in the sense of the minimum integral mean squared error U2n(τn). An estimate ˆτn=ˆτn(X1,X2,…,Xn) for τ0n is constructed and a theorem is proved that gives conditions under which U2n(ˆτn)∼U2n(τ0n).
Citation:
È. A. Nadaraya, “On the integral mean squared error of some non-parametric estimates of the probability density”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 131–139; Theory Probab. Appl., 19:1 (1974), 133–141
\Bibitem{Nad74}
\by \`E.~A.~Nadaraya
\paper On the integral mean squared error of some non-parametric estimates of the probability density
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 1
\pages 131--139
\mathnet{http://mi.mathnet.ru/tvp2763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=339393}
\zmath{https://zbmath.org/?q=an:0309.62025}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 19
\issue 1
\pages 133--141
\crossref{https://doi.org/10.1137/1119010}
Linking options:
https://www.mathnet.ru/eng/tvp2763
https://www.mathnet.ru/eng/tvp/v19/i1/p131
This publication is cited in the following 49 articles:
Haidong Li, Long Wang, Yijie Peng, Di Wang, 2023 Winter Simulation Conference (WSC), 2023, 552
Rola Musleh, Amal Helu, Hani Samawi, “Kernel-based estimation of P(X < Y) when X and Y are dependent random variables based on progressive type II censoring”, Communications in Statistics - Theory and Methods, 51:8 (2022), 2368
Carlos Tenreiro, “Kernel density estimation for circular data: a Fourier series-based plug-in approach for bandwidth selection”, Journal of Nonparametric Statistics, 34:2 (2022), 377
Necla Gündüz, Celal Ayd{\i}n, “Optimal bandwidth estimators of kernel density functionals for contaminated data”, Journal of Applied Statistics, 48:13-15 (2021), 2239
Gaku Igarashi, Yoshihide Kakizawa, “Higher-order bias corrections for kernel type density estimators on the unit or semi-infinite interval”, Journal of Nonparametric Statistics, 32:3 (2020), 617
Carlos Tenreiro, “Bandwidth selection for kernel density estimation: a Hermite series-based direct plug-in approach”, Journal of Statistical Computation and Simulation, 90:18 (2020), 3433
Amal Helu, Hani Samawi, Haresh Rochani, Jingjing Yin, Robert Vogel, “Kernel density estimation based on progressive type-II censoring”, J. Korean Stat. Soc., 49:2 (2020), 475
C. Tenreiro, “A weighted least-squares cross-validation bandwidth selector for kernel density estimation”, Communications in Statistics - Theory and Methods, 46:7 (2017), 3438
Nadezhda Zaitseva, Sergey Berezin, Mathematics in Industry, 26, Progress in Industrial Mathematics at ECMI 2016, 2017, 769
Yaoyao He, Qifa Xu, Jinhong Wan, Shanlin Yang, “Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function”, Energy, 114 (2016), 498
Su Chen, “Optimal Bandwidth Selection for Kernel Density Functionals Estimation”, Journal of Probability and Statistics, 2015 (2015), 1
Kitaeva A.V., Subbotina V.I., “Smeschenie yadernykh otsenok funktsionalov ot uslovnykh raspredelenii: znakoperemennye yadra i polinomialnaya approksimatsiya”, Vestnik tomskogo gosudarstvennogo universiteta. upravlenie, vychislitelnaya tekhnika i informatika, 2012, no. 4, 61–70
Bias of conditional density functional's estimators: signchanging kernels and polynomial approximatio
Christian Schellhase, Göran Kauermann, “Density estimation and comparison with a penalized mixture approach”, Comput Stat, 27:4 (2012), 757
Carlos Tenreiro, “Fourier series-based direct plug-in bandwidth selectors for kernel density estimation”, Journal of Nonparametric Statistics, 23:2 (2011), 533
Ewa Skubalska-Rafajłowicz, Lecture Notes in Computer Science, 4029, Artificial Intelligence and Soft Computing – ICAISC 2006, 2006, 133
Ingrid K. Glad, Nils Lid Hjort, Nikolai G. Ushakov, “Correction of Density Estimators that are not Densities”, Scandinavian J Statistics, 30:2 (2003), 415
M. Sköld, G. O. Roberts, “Density Estimation for the Metropolis–Hastings Algorithm”, Scandinavian J Statistics, 30:4 (2003), 699
Catherine Huber, Brenda MacGibbon, Handbook of Statistics, 23, Advances in Survival Analysis, 2003, 209
L. Devroye, L. Györfi, Principles of Nonparametric Learning, 2002, 211
Philippe Gaspar, Sylvie Labroue, Françoise Ogor, Guillaume Lafitte, Laurence Marchal, Magali Rafanel, “Improving Nonparametric Estimates of the Sea State Bias in Radar Altimeter Measurements of Sea Level”, J. Atmos. Oceanic Technol., 19:10 (2002), 1690