Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 1, Pages 131–139 (Mi tvp2763)  

This article is cited in 49 scientific papers (total in 49 papers)

On the integral mean squared error of some non-parametric estimates of the probability density

È. A. Nadaraya

Tbilisi Ivane Javakhishvili State University, Ilia Vekua Institute for Applied Mathematics
Abstract: It is shown that in estimating the density p(x) by means of the statistics (1) the sequence τn=τ0n is optimal in the sense of the minimum integral mean squared error U2n(τn). An estimate ˆτn=ˆτn(X1,X2,,Xn) for τ0n is constructed and a theorem is proved that gives conditions under which U2n(ˆτn)U2n(τ0n).
Received: 04.05.1972
English version:
Theory of Probability and its Applications, 1974, Volume 19, Issue 1, Pages 133–141
DOI: https://doi.org/10.1137/1119010
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: È. A. Nadaraya, “On the integral mean squared error of some non-parametric estimates of the probability density”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 131–139; Theory Probab. Appl., 19:1 (1974), 133–141
Citation in format AMSBIB
\Bibitem{Nad74}
\by \`E.~A.~Nadaraya
\paper On the integral mean squared error of some non-parametric estimates of the probability density
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 1
\pages 131--139
\mathnet{http://mi.mathnet.ru/tvp2763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=339393}
\zmath{https://zbmath.org/?q=an:0309.62025}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 19
\issue 1
\pages 133--141
\crossref{https://doi.org/10.1137/1119010}
Linking options:
  • https://www.mathnet.ru/eng/tvp2763
  • https://www.mathnet.ru/eng/tvp/v19/i1/p131
  • This publication is cited in the following 49 articles:
    1. Haidong Li, Long Wang, Yijie Peng, Di Wang, 2023 Winter Simulation Conference (WSC), 2023, 552  crossref
    2. Rola Musleh, Amal Helu, Hani Samawi, “Kernel-based estimation of P(X < Y) when X and Y are dependent random variables based on progressive type II censoring”, Communications in Statistics - Theory and Methods, 51:8 (2022), 2368  crossref
    3. Carlos Tenreiro, “Kernel density estimation for circular data: a Fourier series-based plug-in approach for bandwidth selection”, Journal of Nonparametric Statistics, 34:2 (2022), 377  crossref
    4. Necla Gündüz, Celal Ayd{\i}n, “Optimal bandwidth estimators of kernel density functionals for contaminated data”, Journal of Applied Statistics, 48:13-15 (2021), 2239  crossref
    5. Gaku Igarashi, Yoshihide Kakizawa, “Higher-order bias corrections for kernel type density estimators on the unit or semi-infinite interval”, Journal of Nonparametric Statistics, 32:3 (2020), 617  crossref
    6. Carlos Tenreiro, “Bandwidth selection for kernel density estimation: a Hermite series-based direct plug-in approach”, Journal of Statistical Computation and Simulation, 90:18 (2020), 3433  crossref
    7. Amal Helu, Hani Samawi, Haresh Rochani, Jingjing Yin, Robert Vogel, “Kernel density estimation based on progressive type-II censoring”, J. Korean Stat. Soc., 49:2 (2020), 475  crossref
    8. C. Tenreiro, “A weighted least-squares cross-validation bandwidth selector for kernel density estimation”, Communications in Statistics - Theory and Methods, 46:7 (2017), 3438  crossref
    9. Nadezhda Zaitseva, Sergey Berezin, Mathematics in Industry, 26, Progress in Industrial Mathematics at ECMI 2016, 2017, 769  crossref
    10. Yaoyao He, Qifa Xu, Jinhong Wan, Shanlin Yang, “Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function”, Energy, 114 (2016), 498  crossref
    11. Su Chen, “Optimal Bandwidth Selection for Kernel Density Functionals Estimation”, Journal of Probability and Statistics, 2015 (2015), 1  crossref
    12. Kitaeva A.V., Subbotina V.I., “Smeschenie yadernykh otsenok funktsionalov ot uslovnykh raspredelenii: znakoperemennye yadra i polinomialnaya approksimatsiya”, Vestnik tomskogo gosudarstvennogo universiteta. upravlenie, vychislitelnaya tekhnika i informatika, 2012, no. 4, 61–70 Bias of conditional density functional's estimators: signchanging kernels and polynomial approximatio  elib
    13. Christian Schellhase, Göran Kauermann, “Density estimation and comparison with a penalized mixture approach”, Comput Stat, 27:4 (2012), 757  crossref
    14. Carlos Tenreiro, “Fourier series-based direct plug-in bandwidth selectors for kernel density estimation”, Journal of Nonparametric Statistics, 23:2 (2011), 533  crossref
    15. Ewa Skubalska-Rafajłowicz, Lecture Notes in Computer Science, 4029, Artificial Intelligence and Soft Computing – ICAISC 2006, 2006, 133  crossref
    16. Ingrid K. Glad, Nils Lid Hjort, Nikolai G. Ushakov, “Correction of Density Estimators that are not Densities”, Scandinavian J Statistics, 30:2 (2003), 415  crossref
    17. M. Sköld, G. O. Roberts, “Density Estimation for the Metropolis–Hastings Algorithm”, Scandinavian J Statistics, 30:4 (2003), 699  crossref
    18. Catherine Huber, Brenda MacGibbon, Handbook of Statistics, 23, Advances in Survival Analysis, 2003, 209  crossref
    19. L. Devroye, L. Györfi, Principles of Nonparametric Learning, 2002, 211  crossref
    20. Philippe Gaspar, Sylvie Labroue, Françoise Ogor, Guillaume Lafitte, Laurence Marchal, Magali Rafanel, “Improving Nonparametric Estimates of the Sea State Bias in Radar Altimeter Measurements of Sea Level”, J. Atmos. Oceanic Technol., 19:10 (2002), 1690  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025