Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 3, Pages 615–620
DOI: https://doi.org/10.4213/tvp276
(Mi tvp276)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

Convergence of the Poincaré constant

O. Johnson

Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge
Full-text PDF (785 kB) Citations (5)
References:
Abstract: The Poincaré constant $R_Y$ of a random variable $Y$ relates the $L^2(Y)$-norm of a function $g$ and its derivative $g'$. Since $R_Y - D(Y)$ is positive, with equality if and only if $Y$ is normal, it can be seen as a distance from the normal distribution. In this paper we establish the best possible rate of convergence of this distance in the central limit theorem. Furthermore, we show that $R_Y$ is finite for discrete mixtures of normals, allowing us to add rates to the proof of the central limit theorem in the sense of relative entropy.
Keywords: Poincaré constant, spectral gap, central limit theorem, Fisher information.
Received: 05.01.2001
Revised: 24.06.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 3, Pages 535–541
DOI: https://doi.org/10.1137/S0040585X97980622
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. Johnson, “Convergence of the Poincaré constant”, Teor. Veroyatnost. i Primenen., 48:3 (2003), 615–620; Theory Probab. Appl., 48:3 (2004), 535–541
Citation in format AMSBIB
\Bibitem{Joh03}
\by O.~Johnson
\paper Convergence of the Poincar\'{e} constant
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 3
\pages 615--620
\mathnet{http://mi.mathnet.ru/tvp276}
\crossref{https://doi.org/10.4213/tvp276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141356}
\zmath{https://zbmath.org/?q=an:1054.60026}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 3
\pages 535--541
\crossref{https://doi.org/10.1137/S0040585X97980622}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224300900011}
Linking options:
  • https://www.mathnet.ru/eng/tvp276
  • https://doi.org/10.4213/tvp276
  • https://www.mathnet.ru/eng/tvp/v48/i3/p615
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :164
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024