Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 3, Pages 596–608
DOI: https://doi.org/10.4213/tvp274
(Mi tvp274)
 

Short Communications

Adjusted Euler–MacLaurin predictor for integrating smooth spatial processes

K. Benhenni, R. Drouilhet

Université Pierre Mendès France - Grenoble 2
References:
Abstract: We consider the problem of predicting integrals of a spatial stationary process $Z$ over a unit square. We construct predictors based on a systematic sampling of size $m^2$ by approximating the existing mean squared derivatives of the process in the two-dimensional Euler–MacLaurin formula by finite differences up to some appropriate order. We show that if the spectral density satisfies $f_{Z}(\omega) =o(|\omega|^{-p})$ for any fixed positive integer $p$, the corresponding mean squared error is of order $m^{-p}$.
Keywords: spatial stationary process, predictor, Euler–MacLaurin formula.
Received: 17.09.1999
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 3, Pages 506–520
DOI: https://doi.org/10.1137/S0040585X97980609
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Benhenni, R. Drouilhet, “Adjusted Euler–MacLaurin predictor for integrating smooth spatial processes”, Teor. Veroyatnost. i Primenen., 48:3 (2003), 596–608; Theory Probab. Appl., 48:3 (2004), 506–520
Citation in format AMSBIB
\Bibitem{BenDro03}
\by K.~Benhenni, R.~Drouilhet
\paper Adjusted Euler--MacLaurin predictor for
integrating smooth spatial processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 3
\pages 596--608
\mathnet{http://mi.mathnet.ru/tvp274}
\crossref{https://doi.org/10.4213/tvp274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141354}
\zmath{https://zbmath.org/?q=an:1130.62356}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 3
\pages 506--520
\crossref{https://doi.org/10.1137/S0040585X97980609}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224300900008}
Linking options:
  • https://www.mathnet.ru/eng/tvp274
  • https://doi.org/10.4213/tvp274
  • https://www.mathnet.ru/eng/tvp/v48/i3/p596
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :150
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024