|
Short Communications
Adjusted Euler–MacLaurin predictor for
integrating smooth spatial processes
K. Benhenni, R. Drouilhet Université Pierre Mendès France - Grenoble 2
Abstract:
We consider the problem of predicting integrals of a spatial stationary
process $Z$ over a unit square. We construct predictors based on a
systematic sampling of size $m^2$ by approximating the existing mean
squared derivatives of the process in the two-dimensional Euler–MacLaurin
formula by finite differences up to some appropriate order. We show that if
the spectral density satisfies $f_{Z}(\omega) =o(|\omega|^{-p})$
for any fixed positive integer $p$, the
corresponding mean squared error is of order $m^{-p}$.
Keywords:
spatial stationary process, predictor, Euler–MacLaurin formula.
Received: 17.09.1999
Citation:
K. Benhenni, R. Drouilhet, “Adjusted Euler–MacLaurin predictor for
integrating smooth spatial processes”, Teor. Veroyatnost. i Primenen., 48:3 (2003), 596–608; Theory Probab. Appl., 48:3 (2004), 506–520
Linking options:
https://www.mathnet.ru/eng/tvp274https://doi.org/10.4213/tvp274 https://www.mathnet.ru/eng/tvp/v48/i3/p596
|
Statistics & downloads: |
Abstract page: | 256 | Full-text PDF : | 150 | References: | 67 |
|