Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 3, Pages 527–534 (Mi tvp2725)  

This article is cited in 23 scientific papers (total in 23 papers)

Some limit theorems for polynomials of second order

V. I. Rotar'

Moscow
Abstract: Let $X_i$ be independent identically distributed random variables, $P_F(E)$ the probability of a set $E$, when the distribuion function of $X_i$ is $F$, class $\mathscr F_{0,1}=\{F\colon x\,dF(x)=0;\ \int x^2dF(x)=1\}$. Let $A_n=\{a_{ij}^{n}\}$ be a $(n\times n)$ symmetric matrix,
\begin{gather*} b_n^2=\sum_i|a_{ii}^{(n)}|+\biggl[\sum_{i,j,i\ne j}(a_{ij}^{(n)})^2\biggr]^{1/2}, \\ e_{jn}^2=|a_{jj}^{(n)}|+\biggl[\sum_k{}^{(j)}(a_{kj}^{(n)})^2\biggr]\bigg/b_n^2\biggl(\sum_i{}^{(j)}a_i=\sum_ia_i-a_j\biggr). \end{gather*}

Here is a typical result of the paper. Theorem {\em 1. Let $X^{(n)}=(X_1,\dots,X_n)$, $\zeta_n=(A_nX^{(n)},X^{(n)})b_n^2$. Then, if $\max\limits_je_{jn}^2=o(b_n^2)$, for any $F,G\in\mathscr F_{0,1}$
$$ \mathbf P_F(\zeta_n<x)-\mathbf P_G(\zeta_n<x)\underset{n\to\infty}\longrightarrow0 $$
for any $x$, possibly excluding $x$ from a set of zero Lebesgue measure}.
Received: 25.11.1971
English version:
Theory of Probability and its Applications, 1974, Volume 18, Issue 3, Pages 499–507
DOI: https://doi.org/10.1137/1118064
Bibliographic databases:
Language: Russian
Citation: V. I. Rotar', “Some limit theorems for polynomials of second order”, Teor. Veroyatnost. i Primenen., 18:3 (1973), 527–534; Theory Probab. Appl., 18:3 (1974), 499–507
Citation in format AMSBIB
\Bibitem{Rot73}
\by V.~I.~Rotar'
\paper Some limit theorems for polynomials of second order
\jour Teor. Veroyatnost. i Primenen.
\yr 1973
\vol 18
\issue 3
\pages 527--534
\mathnet{http://mi.mathnet.ru/tvp2725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=326803}
\zmath{https://zbmath.org/?q=an:0304.60037}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 18
\issue 3
\pages 499--507
\crossref{https://doi.org/10.1137/1118064}
Linking options:
  • https://www.mathnet.ru/eng/tvp2725
  • https://www.mathnet.ru/eng/tvp/v18/i3/p527
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024