|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 3, Pages 527–534
(Mi tvp2725)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
Some limit theorems for polynomials of second order
V. I. Rotar' Moscow
Abstract:
Let $X_i$ be independent identically distributed random variables, $P_F(E)$ the probability of a set $E$, when the distribuion function of $X_i$ is $F$, class $\mathscr F_{0,1}=\{F\colon x\,dF(x)=0;\ \int x^2dF(x)=1\}$. Let $A_n=\{a_{ij}^{n}\}$ be a $(n\times n)$ symmetric matrix,
\begin{gather*}
b_n^2=\sum_i|a_{ii}^{(n)}|+\biggl[\sum_{i,j,i\ne j}(a_{ij}^{(n)})^2\biggr]^{1/2},
\\
e_{jn}^2=|a_{jj}^{(n)}|+\biggl[\sum_k{}^{(j)}(a_{kj}^{(n)})^2\biggr]\bigg/b_n^2\biggl(\sum_i{}^{(j)}a_i=\sum_ia_i-a_j\biggr).
\end{gather*}
Here is a typical result of the paper.
Theorem {\em 1. Let $X^{(n)}=(X_1,\dots,X_n)$, $\zeta_n=(A_nX^{(n)},X^{(n)})b_n^2$. Then, if $\max\limits_je_{jn}^2=o(b_n^2)$, for any $F,G\in\mathscr F_{0,1}$
$$
\mathbf P_F(\zeta_n<x)-\mathbf P_G(\zeta_n<x)\underset{n\to\infty}\longrightarrow0
$$
for any $x$, possibly excluding $x$ from a set of zero Lebesgue measure}.
Received: 25.11.1971
Citation:
V. I. Rotar', “Some limit theorems for polynomials of second order”, Teor. Veroyatnost. i Primenen., 18:3 (1973), 527–534; Theory Probab. Appl., 18:3 (1974), 499–507
Linking options:
https://www.mathnet.ru/eng/tvp2725 https://www.mathnet.ru/eng/tvp/v18/i3/p527
|
Statistics & downloads: |
Abstract page: | 254 | Full-text PDF : | 105 |
|