|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 1, Pages 193–195
(Mi tvp2695)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Short Communications
On sums of random vectors
A. V. Prokhorov M. V. Lomonosov Moscow State University
Abstract:
In the paper one variant of multidimensional analogues of the Bernstein–Kolmogorov inequalities is proposed. Let $X_1,\dots,X_n$ be identically distributed independent random vectors in $R^m$, for which $\mathbf EX_i=0$, $|X_i|<L$, $Y_n=\sum X_j/\sqrt n$. Assuming that eigenvalues of covariance matrix of $X_i$ are equal $\lambda_1=\dots=\lambda_m=\lambda$ we prove inequality (2) for $\mathbf P(|Y_n|>\rho\sqrt\lambda)$.
Received: 20.10.1971
Citation:
A. V. Prokhorov, “On sums of random vectors”, Teor. Veroyatnost. i Primenen., 18:1 (1973), 193–195; Theory Probab. Appl., 18:1 (1973), 186–188
Linking options:
https://www.mathnet.ru/eng/tvp2695 https://www.mathnet.ru/eng/tvp/v18/i1/p193
|
|