Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 1, Pages 122–132 (Mi tvp2685)  

This article is cited in 18 scientific papers (total in 18 papers)

Random mappings with bounded height

V. N. Sachkov

Moscow
Abstract: The paper considers a family $\mathfrak G_n^h$ of mappings $\sigma$ of a finite set $\mathfrak A$ of $n$ elements into itself such that the height of trees in graphs $\Gamma(\mathfrak A,\sigma)$, $\sigma\in\mathfrak G_n^h$ does not exceed $h$. A collection of $a\in\mathfrak A$ is said to belong to the $i$-th layer of a mapping $\sigma$ if $i$ is the least number such that $\sigma^ia=\sigma^{i+p}$, $p>0$ is an integer. The asymptotics for the number of elements of $\mathfrak G_n^h$ as $n\to\infty$ is found. It is shown that the distribution of points of $\mathfrak A$ among the layers of a random mapping $\sigma\in\mathfrak G_n^h$ for an appropriate normalizations tends to a proper multi-dimensional normal distribution. The distribution of the number of components of $\Gamma(\mathfrak A,\sigma)$ for a random $\sigma\in\mathfrak G_n^h$ normalized in an appropriate way is asymptotically normal and the number of contours of a given length is asymptotically distributed according to a Poisson law. The number of images of an element $a\in\mathfrak A$ with respect to a random mapping $\sigma\in\mathfrak G_n^h$ has, in the limit, the uniform distribution. The parameters of all distributions are expressed in terms of a real solution of the equation
$$ L_h(\rho)=1 $$
where $L_0(\rho)=\rho$, $L_k(\rho)=\rho e^{L_{k-1}(\rho)}$, $k=1,\dots,h$.
Received: 01.03.1971
English version:
Theory of Probability and its Applications, 1973, Volume 18, Issue 1, Pages 120–130
DOI: https://doi.org/10.1137/1118009
Bibliographic databases:
Language: Russian
Citation: V. N. Sachkov, “Random mappings with bounded height”, Teor. Veroyatnost. i Primenen., 18:1 (1973), 122–132; Theory Probab. Appl., 18:1 (1973), 120–130
Citation in format AMSBIB
\Bibitem{Sac73}
\by V.~N.~Sachkov
\paper Random mappings with bounded height
\jour Teor. Veroyatnost. i Primenen.
\yr 1973
\vol 18
\issue 1
\pages 122--132
\mathnet{http://mi.mathnet.ru/tvp2685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=312539}
\zmath{https://zbmath.org/?q=an:0327.60006}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 18
\issue 1
\pages 120--130
\crossref{https://doi.org/10.1137/1118009}
Linking options:
  • https://www.mathnet.ru/eng/tvp2685
  • https://www.mathnet.ru/eng/tvp/v18/i1/p122
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024